Mercurial > hg > octave-nkf
view scripts/plot/fplot.m @ 17136:e4968b4613a5
Overhaul default menubar (still not perfect).
* scripts/plot/figure.m: Always call __add_default_menu__.
* scripts/plot/private/__add_default_menu__.m: Check that toolkit is FLTK
before proceeding. Don't do redundant check that input is figure handle.
Don't turn off handlevisibility for submenus, they are already hidden
from above. Restrict findall() search to a depth of 1. Add __default_menu__
tags to Edit and Help menus so they can be identified. Don't call drawnow
unnecessarily in callback routines. Use gcbf() so that Save filename is
stored on a per figure basis rather than globally. Eliminate assigning
to unused variables. Add HACK to turn off menubar if property is set to
"none" on figure.
author | Rik <rik@octave.org> |
---|---|
date | Thu, 01 Aug 2013 10:18:54 -0700 |
parents | eaab03308c0b |
children | d74e2b5bdeb5 |
line wrap: on
line source
## Copyright (C) 2005-2012 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} fplot (@var{fn}, @var{limits}) ## @deftypefnx {Function File} {} fplot (@var{fn}, @var{limits}, @var{tol}) ## @deftypefnx {Function File} {} fplot (@var{fn}, @var{limits}, @var{n}) ## @deftypefnx {Function File} {} fplot (@var{fn}, @var{limits}, @var{fmt}) ## @deftypefnx {Function File} {} fplot (@var{fn}, @var{limits}, @var{tol}, @var{n}, @var{fmt}) ## @deftypefnx {Function File} {[@var{x}, @var{y}] =} fplot (@dots{}) ## Plot a function @var{fn} within the range defined by @var{limits}. ## ## @var{fn} is a function handle, inline function, or string ## containing the name of the function to evaluate. ## The limits of the plot are of the form @code{[@var{xlo}, @var{xhi}]} or ## @code{[@var{xlo}, @var{xhi}, @var{ylo}, @var{yhi}]}. ## The next three arguments are all optional and any number of them may be ## given in any order. ## @var{tol} is the relative tolerance to use for the plot and defaults ## to 2e-3 (.2%). ## @var{n} is the minimum number of points to use. When @var{n} is ## specified, the maximum stepsize will be ## @code{@var{xhi} - @var{xlo} / @var{n}}. More than @var{n} points may still ## be used in order to meet the relative tolerance requirement. ## The @var{fmt} argument specifies the linestyle to be used by the plot ## command. ## ## With no output arguments the results are immediately plotted. With two ## output arguments the 2-D plot data is returned. The data can subsequently ## be plotted manually with @code{plot (@var{x}, @var{y})}. ## ## Example: ## ## @example ## @group ## fplot (@@cos, [0, 2*pi]) ## fplot ("[cos(x), sin(x)]", [0, 2*pi]) ## @end group ## @end example ## ## Note: @code{fplot} works best with continuous functions. Functions with ## discontinuities are unlikely to plot well. This restriction may be removed ## in the future. ## @seealso{ezplot, plot} ## @end deftypefn ## Author: Paul Kienzle <pkienzle@users.sf.net> function [X, Y] = fplot (fn, limits, varargin) if (nargin < 2 || nargin > 5) print_usage (); endif if (strcmp (typeinfo (fn), "inline function")) fn = vectorize (fn); nam = formula (fn); elseif (isa (fn, "function_handle")) nam = func2str (fn); elseif (all (isalnum (fn))) nam = fn; elseif (ischar (fn)) fn = vectorize (inline (fn)); nam = formula (fn); else error ("fplot: FN must be a function handle, inline function, or string"); endif if (iscomplex (limits) || (numel (limits) != 2 && numel (limits) != 4)) error ("fplot: LIMITS must be a real vector with 2 or 4 elements"); endif n = 5; tol = 2e-3; fmt = ""; for i = 1:numel (varargin) arg = varargin{i}; if (ischar (arg)) fmt = arg; elseif (isnumeric (arg) && isscalar (arg) && arg > 0) if (arg == fix (arg)) n = arg; else tol = arg; endif else error ("fplot: bad input in position %d", i+2); endif endfor if (n != 5) ## n was specified x0 = linspace (limits(1), limits(2), n/2 + 1)'; y0 = feval (fn, x0); x = linspace (limits(1), limits(2), n)'; y = feval (fn, x); else x0 = linspace (limits(1), limits(2), 5)'; y0 = feval (fn, x0); n = 8; x = linspace (limits(1), limits(2), n)'; y = feval (fn, x); endif if (rows (x0) != rows (y0)) ## FN is a constant value function y0 = repmat (y0, size (x0)); y = repmat (y, size (x)); endif err0 = Inf; ## FIXME: This algorithm should really use adaptive scaling as the ## the numerical quadrature algorithms do so that extra points are ## used where they are needed and not spread evenly over the entire ## x-range. Try any function with a discontinuity such as ## fplot (@tan, [-2, 2]) or fplot ("1./x", [-3, 2]) to see the ## problems with the current solution. while (n < 2^18) # Something is wrong if we need more than 250K points yi = interp1 (x0, y0, x, "linear"); ## relative error calculation using average of [yi,y] as reference ## since neither estimate is known a priori to be better than the other. err = 0.5 * max (abs ((yi - y) ./ (yi + y))(:)); if (err < tol || abs (err - err0) < tol/2) ## Either relative tolerance has been met OR ## algorithm has stopped making any reasonable progress per iteration. break; endif x0 = x; y0 = y; err0 = err; n = 2 * (n - 1) + 1; x = linspace (limits(1), limits(2), n)'; y = feval (fn, x); endwhile if (nargout == 2) X = x; Y = y; else plot (x, y, fmt); axis (limits); if (isvector (y)) legend (nam); else for i = 1:columns (y) nams{i} = sprintf ("%s(:,%i)", nam, i); endfor legend (nams{:}); endif endif endfunction %!demo %! clf; %! fplot (@cos, [0, 2*pi]); %!demo %! clf; %! fplot ('[cos(x), sin(x)]', [0, 2*pi]); %!demo %! clf; %! ## sinc function %! fh = @(x) sin (pi*x) ./ (pi*x); %! fplot (fh, [-5, 5]); %!test %! [x, y] = fplot ("[cos(x), sin(x)]", [0, 2*pi]); %! assert (columns (y) == 2); %! assert (rows (x) == rows (y)); %! assert (y, [cos(x), sin(x)], -2e-3); %% Test input validation %!error fplot (1) %!error fplot (1,2,3,4,5,6) %!error <FN must be a function handle> fplot (1, [0 1]) %!error <LIMITS must be a real vector> fplot (@cos, [i, 2*i]) %!error <LIMITS must be a real vector with 2 or 4> fplot (@cos, [1]) %!error <LIMITS must be a real vector with 2 or 4> fplot (@cos, [1 2 3]) %!error <bad input in position 3> fplot (@cos,[-1,1], {1})