Mercurial > hg > octave-nkf
view scripts/ode/private/ode_rk_interpolate.m @ 20796:e5f36a7854a5
Remove fuzzy matching from odeset/odeget.
* levenshtein.cc: Deleted file.
* libinterp/corefcn/module.mk: Remove levenshtein.cc from build system.
* fuzzy_compare.m: Deleted file.
* scripts/ode/module.mk: Remove fuzzy_compare.m from build system
* odeget.m: Reword docstring. Use a persistent cellstr variable to keep track
of all options. Replace fuzzy_compare() calls with combination of strcmpi and
strncmpi. Report errors relative to function odeget rather than OdePkg.
Rewrite and extend BIST tests. Add input validation BIST tests.
* odeset.m: Reword docstring. Use a persistent cellstr variable to keep track
of all options. Replace fuzzy_compare() calls with combination of strcmpi and
strncmpi. Report errors relative to function odeset rather than OdePkg.
Use more meaningful variables names and create intermediate variables with
logical names to help make code readable. Remove interactive input when
multiple property names match and just issue an error. Rewrite BIST tests.
* ode_struct_value_check.m: Remove input checking for private function which
must always be invoked correctly by caller. Use intermediate variables opt and
val to make the code more understandable. Consolidate checks on values into
single if statements. Use 'val == fix (val)' to check for integer.
* __unimplemented__.m: Removed odeset, odeget, ode45 from list.
author | Rik <rik@octave.org> |
---|---|
date | Fri, 09 Oct 2015 12:03:23 -0700 |
parents | ea6a1c00763a |
children |
line wrap: on
line source
## Copyright (C) 2015 Carlo de Falco ## Copyright (C) 2015 Jacopo Corno <jacopo.corno@gmail.com> ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. function u_interp = ode_rk_interpolate (order, z, u, t, k_vals, dt, args) switch order #{ case 1 u_interp = linear_interpolation (z, u, t); case 2 if (! isempty (k_vals)) der = k_vals(:,1); else der = feval (func, z(1) , u(:,1), args); endif u_interp = quadratic_interpolation (z, u, der, t); case 3 u_interp = ... hermite_cubic_interpolation (z, u, k_vals, t); case 4 ## if ode45 is used without local extrapolation this function ## doesn't require a new function evaluation. u_interp = dorpri_interpolation ([z(i-1) z(i)], [u(:,i-1) u(:,i)], k_vals, tspan(counter)); #} case 5 ## ode45 with Dormand-Prince scheme: u_interp = ... hermite_quartic_interpolation (z, u, k_vals, t); ## it is also possible to do a new function evaluation and use ## the quintic hermite interpolator ## f_half = feval (func, t+1/2*dt, u_half, ## options.vfunarguments{:}); ## u_interp = ## hermite_quintic_interpolation ([z(i-1) z(i)], ## [u(:,i-1) u_half u(:,i)], ## [k_vals(:,1) f_half ... ## k_vals(:,end)], ## tspan(counter)); otherwise warning ("High order interpolation not yet implemented: ", "using cubic interpolation instead"); der(:,1) = feval (func, z(1) , u(:,1), args); der(:,2) = feval (func, z(2) , u(:,2), args); u_interp = hermite_cubic_interpolation (z, u, der, t); endswitch endfunction ## The function below can be used in an ODE solver to ## interpolate the solution at the time t_out using 4th order ## hermite interpolation. function x_out = hermite_quartic_interpolation (t, x, der, t_out) persistent coefs_u_half = ... [(6025192743/30085553152), 0, (51252292925/65400821598), ... (-2691868925/45128329728), (187940372067/1594534317056), ... (-1776094331/19743644256), (11237099/235043384)].'; ## 4th order approximation of y in t+dt/2 as proposed by ## Shampine in Lawrence, Shampine, "Some Practical ## Runge-Kutta Formulas", 1986. dt = t(2) - t(1); u_half = x(:,1) + (1/2) * dt * (der(:,1:7) * coefs_u_half); ## Rescale time on [0,1] s = (t_out - t(1)) / dt; ## Hermite basis functions ## H0 = 1 - 11*s.^2 + 18*s.^3 - 8*s.^4; ## H1 = s - 4*s.^2 + 5*s.^3 - 2*s.^4; ## H2 = 16*s.^2 - 32*s.^3 + 16*s.^4; ## H3 = - 5*s.^2 + 14*s.^3 - 8*s.^4; ## H4 = s.^2 - 3*s.^3 + 2*s.^4; x_out = zeros (rows (x), length (t_out)); x_out = (1 - 11*s.^2 + 18*s.^3 - 8*s.^4) .* x(:,1) + ... ( s - 4*s.^2 + 5*s.^3 - 2*s.^4) .* (dt * der(:,1)) + ... ( 16*s.^2 - 32*s.^3 + 16*s.^4) .* u_half + ... ( - 5*s.^2 + 14*s.^3 - 8*s.^4) .* x(:,2) + ... ( s.^2 - 3*s.^3 + 2*s.^4) .* (dt * der(:,end)); endfunction