Mercurial > hg > octave-nkf
view liboctave/fCColVector.cc @ 14557:e8e86ae3abbc
make diag (x, m, n) return a proper diagonal matrix object (bug #36099)
* Array.h, Array.cc (Array<T>::diag (octave_idx_type, octave_idx_type)
const): New function.
* CMatrix.h, CMatrix.cc (ComplexMatrix::diag (octave_idx_type,
octave_idx_type) const): New function.
* dMatrix.h, dMatrix.cc (Matrix::diag (octave_idx_type,
octave_idx_type) const): New function.
* fCMatrix.h, fCMatrix.cc (FloatComplexMatrix::diag (octave_idx_type,
octave_idx_type) const): New function.
* fMatrix.h, fMatrix.cc (FloatMatrix::diag (octave_idx_type,
octave_idx_type) const): New function.
* CNDArray.cc, CNDArray.h (ComplexNDArray::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* boolNDArray.cc, boolNDArray.h (boolNDArray::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* chNDArray.cc, chNDArray.h (charNDArray::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* dNDArray.cc, dNDArray.h (NDArray::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* fCNDArray.cc, fCNDArray.h (FloatComplexNDArray::diag
(octave_idx_type, octave_idx_type) const): New forwarding function.
* fNDArray.cc, fNDArray.h (FloatNDArray::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* intNDArray.cc, intNDArray.h (intNDArray<T>::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* Cell.cc, Cell.h (Cell::diag (octave_idx_type, octave_idx_type)
const): New function.
* ov.h (octave_value::diag (octave_idx_type, octave_idx_type)):
New function.
* ov-base.h, ov-base.cc (octave_base_value::diag (octave_idx_type,
octave_idx_type) const): New virtual function and default implementation.
* ov-base-mat.h (octave_base_matrix<T>::diag (octave_idx_type,
octave_idx_type) const): New function.
* ov-base-scalar.cc, ov-base-scalar.h (octave_base_scalar<T>::diag
(octave_idx_type, octave_idx_type)): New function.
* ov-complex.cc, ov-complex.h (octave_complex::diag (octave_idx_type,
octave_idx_type) const): New function.
* ov-cx-mat.cc, ov-complex.h (octave_complex_matrix::diag
(octave_idx_type, octave_idx_type) const): New function.
* ov-float.cc, ov-float.h (octave_float_scalar::diag (octave_idx_type,
octave_idx_type) const): New function.
* ov-flt-complex.cc, ov-flt-complex.h (octave_float_complex::diag
(octave_idx_type, octave_idx_type) const): New function.
* ov-flt-cx-mat.cc, ov-flt-cx-mat.h (octave_float_complex_matrix::diag
(octave_idx_type, octave_idx_type) const): New function.
* ov-flt-re-mat.cc, ov-flt-re-mat.h (octave_float_matrix::diag
(octave_idx_type, octave_idx_type) const): New function.
* ov-range.cc, ov-range.h (octave_range::diag (octave_idx_type,
octave_idx_type) const): New function.
* ov-re-mat.cc, ov-re-mat.h (octave_matrix::diag (octave_idx_type,
octave_idx_type) const): New function.
* ov-scalar.cc, ov-scalar.h (octave_scalar::diag (octave_idx_type,
octave_idx_type) const): New function.
* data.cc (Fdiag): Use two-arg octave_value::diag method for
dispatching. New tests.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 12 Apr 2012 16:27:39 -0400 |
parents | ed8c4921bf61 |
children | 460a3c6d8bf1 |
line wrap: on
line source
// ColumnVector manipulations. /* Copyright (C) 1994-2012 John W. Eaton Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include "Array-util.h" #include "f77-fcn.h" #include "functor.h" #include "lo-error.h" #include "mx-base.h" #include "mx-inlines.cc" #include "oct-cmplx.h" // Fortran functions we call. extern "C" { F77_RET_T F77_FUNC (cgemv, CGEMV) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const FloatComplex&, const FloatComplex*, const octave_idx_type&, const FloatComplex*, const octave_idx_type&, const FloatComplex&, FloatComplex*, const octave_idx_type& F77_CHAR_ARG_LEN_DECL); } // FloatComplex Column Vector class FloatComplexColumnVector::FloatComplexColumnVector (const FloatColumnVector& a) : MArray<FloatComplex> (a) { } bool FloatComplexColumnVector::operator == (const FloatComplexColumnVector& a) const { octave_idx_type len = length (); if (len != a.length ()) return 0; return mx_inline_equal (len, data (), a.data ()); } bool FloatComplexColumnVector::operator != (const FloatComplexColumnVector& a) const { return !(*this == a); } // destructive insert/delete/reorder operations FloatComplexColumnVector& FloatComplexColumnVector::insert (const FloatColumnVector& a, octave_idx_type r) { octave_idx_type a_len = a.length (); if (r < 0 || r + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r+i) = a.elem (i); } return *this; } FloatComplexColumnVector& FloatComplexColumnVector::insert (const FloatComplexColumnVector& a, octave_idx_type r) { octave_idx_type a_len = a.length (); if (r < 0 || r + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r+i) = a.elem (i); } return *this; } FloatComplexColumnVector& FloatComplexColumnVector::fill (float val) { octave_idx_type len = length (); if (len > 0) { make_unique (); for (octave_idx_type i = 0; i < len; i++) xelem (i) = val; } return *this; } FloatComplexColumnVector& FloatComplexColumnVector::fill (const FloatComplex& val) { octave_idx_type len = length (); if (len > 0) { make_unique (); for (octave_idx_type i = 0; i < len; i++) xelem (i) = val; } return *this; } FloatComplexColumnVector& FloatComplexColumnVector::fill (float val, octave_idx_type r1, octave_idx_type r2) { octave_idx_type len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (r2 >= r1) { make_unique (); for (octave_idx_type i = r1; i <= r2; i++) xelem (i) = val; } return *this; } FloatComplexColumnVector& FloatComplexColumnVector::fill (const FloatComplex& val, octave_idx_type r1, octave_idx_type r2) { octave_idx_type len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (r2 >= r1) { make_unique (); for (octave_idx_type i = r1; i <= r2; i++) xelem (i) = val; } return *this; } FloatComplexColumnVector FloatComplexColumnVector::stack (const FloatColumnVector& a) const { octave_idx_type len = length (); octave_idx_type nr_insert = len; FloatComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } FloatComplexColumnVector FloatComplexColumnVector::stack (const FloatComplexColumnVector& a) const { octave_idx_type len = length (); octave_idx_type nr_insert = len; FloatComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } FloatComplexRowVector FloatComplexColumnVector::hermitian (void) const { return MArray<FloatComplex>::hermitian (std::conj); } FloatComplexRowVector FloatComplexColumnVector::transpose (void) const { return MArray<FloatComplex>::transpose (); } FloatColumnVector FloatComplexColumnVector::abs (void) const { return do_mx_unary_map<float, FloatComplex, std::abs> (*this); } FloatComplexColumnVector conj (const FloatComplexColumnVector& a) { return do_mx_unary_map<FloatComplex, FloatComplex, std::conj<float> > (a); } // resize is the destructive equivalent for this one FloatComplexColumnVector FloatComplexColumnVector::extract (octave_idx_type r1, octave_idx_type r2) const { if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } octave_idx_type new_r = r2 - r1 + 1; FloatComplexColumnVector result (new_r); for (octave_idx_type i = 0; i < new_r; i++) result.elem (i) = elem (r1+i); return result; } FloatComplexColumnVector FloatComplexColumnVector::extract_n (octave_idx_type r1, octave_idx_type n) const { FloatComplexColumnVector result (n); for (octave_idx_type i = 0; i < n; i++) result.elem (i) = elem (r1+i); return result; } // column vector by column vector -> column vector operations FloatComplexColumnVector& FloatComplexColumnVector::operator += (const FloatColumnVector& a) { octave_idx_type len = length (); octave_idx_type a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +=", len, a_len); return *this; } if (len == 0) return *this; FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_add2 (len, d, a.data ()); return *this; } FloatComplexColumnVector& FloatComplexColumnVector::operator -= (const FloatColumnVector& a) { octave_idx_type len = length (); octave_idx_type a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -=", len, a_len); return *this; } if (len == 0) return *this; FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_sub2 (len, d, a.data ()); return *this; } // matrix by column vector -> column vector operations FloatComplexColumnVector operator * (const FloatComplexMatrix& m, const FloatColumnVector& a) { FloatComplexColumnVector tmp (a); return m * tmp; } FloatComplexColumnVector operator * (const FloatComplexMatrix& m, const FloatComplexColumnVector& a) { FloatComplexColumnVector retval; octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) gripe_nonconformant ("operator *", nr, nc, a_len, 1); else { retval.clear (nr); if (nr != 0) { if (nc == 0) retval.fill (0.0); else { FloatComplex *y = retval.fortran_vec (); F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 ("N", 1), nr, nc, 1.0f, m.data (), nr, a.data (), 1, 0.0f, y, 1 F77_CHAR_ARG_LEN (1))); } } } return retval; } // matrix by column vector -> column vector operations FloatComplexColumnVector operator * (const FloatMatrix& m, const FloatComplexColumnVector& a) { FloatComplexMatrix tmp (m); return tmp * a; } // diagonal matrix by column vector -> column vector operations FloatComplexColumnVector operator * (const FloatDiagMatrix& m, const FloatComplexColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return FloatComplexColumnVector (); } if (nc == 0 || nr == 0) return FloatComplexColumnVector (0); FloatComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } FloatComplexColumnVector operator * (const FloatComplexDiagMatrix& m, const FloatColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return FloatComplexColumnVector (); } if (nc == 0 || nr == 0) return FloatComplexColumnVector (0); FloatComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } FloatComplexColumnVector operator * (const FloatComplexDiagMatrix& m, const FloatComplexColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return FloatComplexColumnVector (); } if (nc == 0 || nr == 0) return FloatComplexColumnVector (0); FloatComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } // other operations FloatComplex FloatComplexColumnVector::min (void) const { octave_idx_type len = length (); if (len == 0) return 0.0; FloatComplex res = elem (0); float absres = std::abs (res); for (octave_idx_type i = 1; i < len; i++) if (std::abs (elem (i)) < absres) { res = elem (i); absres = std::abs (res); } return res; } FloatComplex FloatComplexColumnVector::max (void) const { octave_idx_type len = length (); if (len == 0) return 0.0; FloatComplex res = elem (0); float absres = std::abs (res); for (octave_idx_type i = 1; i < len; i++) if (std::abs (elem (i)) > absres) { res = elem (i); absres = std::abs (res); } return res; } // i/o std::ostream& operator << (std::ostream& os, const FloatComplexColumnVector& a) { // int field_width = os.precision () + 7; for (octave_idx_type i = 0; i < a.length (); i++) os << /* setw (field_width) << */ a.elem (i) << "\n"; return os; } std::istream& operator >> (std::istream& is, FloatComplexColumnVector& a) { octave_idx_type len = a.length(); if (len > 0) { float tmp; for (octave_idx_type i = 0; i < len; i++) { is >> tmp; if (is) a.elem (i) = tmp; else break; } } return is; }