Mercurial > hg > octave-nkf
view liboctave/dMatrix.cc @ 7893:eb9ccb44ea41
make regexp(...,'once') matlab compatible
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Wed, 18 Jun 2008 21:00:06 +0200 |
parents | 9bcb31cc56be |
children | 935be827eaf8 |
line wrap: on
line source
// Matrix manipulations. /* Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 John W. Eaton Copyright (C) 2008 Jaroslav Hajek This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include <iostream> #include <vector> #include "Array-util.h" #include "byte-swap.h" #include "dMatrix.h" #include "dbleAEPBAL.h" #include "dbleDET.h" #include "dbleSCHUR.h" #include "dbleSVD.h" #include "dbleCHOL.h" #include "f77-fcn.h" #include "functor.h" #include "lo-error.h" #include "lo-ieee.h" #include "lo-mappers.h" #include "lo-utils.h" #include "mx-base.h" #include "mx-m-dm.h" #include "mx-dm-m.h" #include "mx-inlines.cc" #include "oct-cmplx.h" #include "quit.h" #if defined (HAVE_FFTW3) #include "oct-fftw.h" #endif // Fortran functions we call. extern "C" { F77_RET_T F77_FUNC (xilaenv, XILAENV) (const octave_idx_type&, F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dgebal, DGEBAL) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type&, octave_idx_type&, double*, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dgebak, DGEBAK) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, double*, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dgemm, DGEMM) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, const double&, const double*, const octave_idx_type&, const double*, const octave_idx_type&, const double&, double*, const octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dgemv, DGEMV) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const double&, const double*, const octave_idx_type&, const double*, const octave_idx_type&, const double&, double*, const octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (xddot, XDDOT) (const octave_idx_type&, const double*, const octave_idx_type&, const double*, const octave_idx_type&, double&); F77_RET_T F77_FUNC (dsyrk, DSYRK) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const double&, const double*, const octave_idx_type&, const double&, double*, const octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dgetrf, DGETRF) (const octave_idx_type&, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type*, octave_idx_type&); F77_RET_T F77_FUNC (dgetrs, DGETRS) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const double*, const octave_idx_type&, const octave_idx_type*, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dgetri, DGETRI) (const octave_idx_type&, double*, const octave_idx_type&, const octave_idx_type*, double*, const octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (dgecon, DGECON) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, const double&, double&, double*, octave_idx_type*, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dgelsy, DGELSY) (const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, double*, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type*, double&, octave_idx_type&, double*, const octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (dgelsd, DGELSD) (const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, double*, const octave_idx_type&, double*, const octave_idx_type&, double*, double&, octave_idx_type&, double*, const octave_idx_type&, octave_idx_type*, octave_idx_type&); F77_RET_T F77_FUNC (dpotrf, DPOTRF) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double *, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dpocon, DPOCON) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, const double&, double&, double*, octave_idx_type*, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dpotrs, DPOTRS) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const double*, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dtrtri, DTRTRI) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dtrcon, DTRCON) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const double*, const octave_idx_type&, double&, double*, octave_idx_type*, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dtrtrs, DTRTRS) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const double*, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); // Note that the original complex fft routines were not written for // double complex arguments. They have been modified by adding an // implicit double precision (a-h,o-z) statement at the beginning of // each subroutine. F77_RET_T F77_FUNC (zffti, ZFFTI) (const octave_idx_type&, Complex*); F77_RET_T F77_FUNC (zfftf, ZFFTF) (const octave_idx_type&, Complex*, Complex*); F77_RET_T F77_FUNC (zfftb, ZFFTB) (const octave_idx_type&, Complex*, Complex*); F77_RET_T F77_FUNC (dlartg, DLARTG) (const double&, const double&, double&, double&, double&); F77_RET_T F77_FUNC (dtrsyl, DTRSYL) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, const double*, const octave_idx_type&, const double*, const octave_idx_type&, const double*, const octave_idx_type&, double&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (xdlange, XDLANGE) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const double*, const octave_idx_type&, double*, double& F77_CHAR_ARG_LEN_DECL); } // Matrix class. Matrix::Matrix (const RowVector& rv) : MArray2<double> (1, rv.length (), 0.0) { for (octave_idx_type i = 0; i < rv.length (); i++) elem (0, i) = rv.elem (i); } Matrix::Matrix (const ColumnVector& cv) : MArray2<double> (cv.length (), 1, 0.0) { for (octave_idx_type i = 0; i < cv.length (); i++) elem (i, 0) = cv.elem (i); } Matrix::Matrix (const DiagMatrix& a) : MArray2<double> (a.rows (), a.cols (), 0.0) { for (octave_idx_type i = 0; i < a.length (); i++) elem (i, i) = a.elem (i, i); } // FIXME -- could we use a templated mixed-type copy function // here? Matrix::Matrix (const boolMatrix& a) : MArray2<double> (a.rows (), a.cols ()) { for (octave_idx_type i = 0; i < a.rows (); i++) for (octave_idx_type j = 0; j < a.cols (); j++) elem (i, j) = a.elem (i, j); } Matrix::Matrix (const charMatrix& a) : MArray2<double> (a.rows (), a.cols ()) { for (octave_idx_type i = 0; i < a.rows (); i++) for (octave_idx_type j = 0; j < a.cols (); j++) elem (i, j) = a.elem (i, j); } bool Matrix::operator == (const Matrix& a) const { if (rows () != a.rows () || cols () != a.cols ()) return false; return mx_inline_equal (data (), a.data (), length ()); } bool Matrix::operator != (const Matrix& a) const { return !(*this == a); } bool Matrix::is_symmetric (void) const { if (is_square () && rows () > 0) { for (octave_idx_type i = 0; i < rows (); i++) for (octave_idx_type j = i+1; j < cols (); j++) if (elem (i, j) != elem (j, i)) return false; return true; } return false; } Matrix& Matrix::insert (const Matrix& a, octave_idx_type r, octave_idx_type c) { Array2<double>::insert (a, r, c); return *this; } Matrix& Matrix::insert (const RowVector& a, octave_idx_type r, octave_idx_type c) { octave_idx_type a_len = a.length (); if (r < 0 || r >= rows () || c < 0 || c + a_len > cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r, c+i) = a.elem (i); } return *this; } Matrix& Matrix::insert (const ColumnVector& a, octave_idx_type r, octave_idx_type c) { octave_idx_type a_len = a.length (); if (r < 0 || r + a_len > rows () || c < 0 || c >= cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r+i, c) = a.elem (i); } return *this; } Matrix& Matrix::insert (const DiagMatrix& a, octave_idx_type r, octave_idx_type c) { octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); if (r < 0 || r + a_nr > rows () || c < 0 || c + a_nc > cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } fill (0.0, r, c, r + a_nr - 1, c + a_nc - 1); octave_idx_type a_len = a.length (); if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r+i, c+i) = a.elem (i, i); } return *this; } Matrix& Matrix::fill (double val) { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr > 0 && nc > 0) { make_unique (); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) xelem (i, j) = val; } return *this; } Matrix& Matrix::fill (double val, octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2) { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0 || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; } if (r2 >= r1 && c2 >= c1) { make_unique (); for (octave_idx_type j = c1; j <= c2; j++) for (octave_idx_type i = r1; i <= r2; i++) xelem (i, j) = val; } return *this; } Matrix Matrix::append (const Matrix& a) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr != a.rows ()) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return Matrix (); } octave_idx_type nc_insert = nc; Matrix retval (nr, nc + a.cols ()); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } Matrix Matrix::append (const RowVector& a) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr != 1) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return Matrix (); } octave_idx_type nc_insert = nc; Matrix retval (nr, nc + a.length ()); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } Matrix Matrix::append (const ColumnVector& a) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr != a.length ()) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return Matrix (); } octave_idx_type nc_insert = nc; Matrix retval (nr, nc + 1); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } Matrix Matrix::append (const DiagMatrix& a) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr != a.rows ()) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return *this; } octave_idx_type nc_insert = nc; Matrix retval (nr, nc + a.cols ()); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } Matrix Matrix::stack (const Matrix& a) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nc != a.cols ()) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return Matrix (); } octave_idx_type nr_insert = nr; Matrix retval (nr + a.rows (), nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } Matrix Matrix::stack (const RowVector& a) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nc != a.length ()) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return Matrix (); } octave_idx_type nr_insert = nr; Matrix retval (nr + 1, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } Matrix Matrix::stack (const ColumnVector& a) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nc != 1) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return Matrix (); } octave_idx_type nr_insert = nr; Matrix retval (nr + a.length (), nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } Matrix Matrix::stack (const DiagMatrix& a) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nc != a.cols ()) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return Matrix (); } octave_idx_type nr_insert = nr; Matrix retval (nr + a.rows (), nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } Matrix real (const ComplexMatrix& a) { octave_idx_type a_len = a.length (); Matrix retval; if (a_len > 0) retval = Matrix (mx_inline_real_dup (a.data (), a_len), a.rows (), a.cols ()); return retval; } Matrix imag (const ComplexMatrix& a) { octave_idx_type a_len = a.length (); Matrix retval; if (a_len > 0) retval = Matrix (mx_inline_imag_dup (a.data (), a_len), a.rows (), a.cols ()); return retval; } Matrix Matrix::extract (octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2) const { if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; } octave_idx_type new_r = r2 - r1 + 1; octave_idx_type new_c = c2 - c1 + 1; Matrix result (new_r, new_c); for (octave_idx_type j = 0; j < new_c; j++) for (octave_idx_type i = 0; i < new_r; i++) result.xelem (i, j) = elem (r1+i, c1+j); return result; } Matrix Matrix::extract_n (octave_idx_type r1, octave_idx_type c1, octave_idx_type nr, octave_idx_type nc) const { Matrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) result.xelem (i, j) = elem (r1+i, c1+j); return result; } // extract row or column i. RowVector Matrix::row (octave_idx_type i) const { octave_idx_type nc = cols (); if (i < 0 || i >= rows ()) { (*current_liboctave_error_handler) ("invalid row selection"); return RowVector (); } RowVector retval (nc); for (octave_idx_type j = 0; j < nc; j++) retval.xelem (j) = elem (i, j); return retval; } ColumnVector Matrix::column (octave_idx_type i) const { octave_idx_type nr = rows (); if (i < 0 || i >= cols ()) { (*current_liboctave_error_handler) ("invalid column selection"); return ColumnVector (); } ColumnVector retval (nr); for (octave_idx_type j = 0; j < nr; j++) retval.xelem (j) = elem (j, i); return retval; } Matrix Matrix::inverse (void) const { octave_idx_type info; double rcon; MatrixType mattype (*this); return inverse (mattype, info, rcon, 0, 0); } Matrix Matrix::inverse (octave_idx_type& info) const { double rcon; MatrixType mattype (*this); return inverse (mattype, info, rcon, 0, 0); } Matrix Matrix::inverse (octave_idx_type& info, double& rcon, int force, int calc_cond) const { MatrixType mattype (*this); return inverse (mattype, info, rcon, force, calc_cond); } Matrix Matrix::inverse (MatrixType& mattype) const { octave_idx_type info; double rcon; return inverse (mattype, info, rcon, 0, 0); } Matrix Matrix::inverse (MatrixType &mattype, octave_idx_type& info) const { double rcon; return inverse (mattype, info, rcon, 0, 0); } Matrix Matrix::tinverse (MatrixType &mattype, octave_idx_type& info, double& rcon, int force, int calc_cond) const { Matrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr != nc || nr == 0 || nc == 0) (*current_liboctave_error_handler) ("inverse requires square matrix"); else { int typ = mattype.type (); char uplo = (typ == MatrixType::Lower ? 'L' : 'U'); char udiag = 'N'; retval = *this; double *tmp_data = retval.fortran_vec (); F77_XFCN (dtrtri, DTRTRI, (F77_CONST_CHAR_ARG2 (&uplo, 1), F77_CONST_CHAR_ARG2 (&udiag, 1), nr, tmp_data, nr, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); // Throw-away extra info LAPACK gives so as to not change output. rcon = 0.0; if (info != 0) info = -1; else if (calc_cond) { octave_idx_type dtrcon_info = 0; char job = '1'; OCTAVE_LOCAL_BUFFER (double, work, 3 * nr); OCTAVE_LOCAL_BUFFER (octave_idx_type, iwork, nr); F77_XFCN (dtrcon, DTRCON, (F77_CONST_CHAR_ARG2 (&job, 1), F77_CONST_CHAR_ARG2 (&uplo, 1), F77_CONST_CHAR_ARG2 (&udiag, 1), nr, tmp_data, nr, rcon, work, iwork, dtrcon_info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (dtrcon_info != 0) info = -1; } if (info == -1 && ! force) retval = *this; // Restore matrix contents. } return retval; } Matrix Matrix::finverse (MatrixType &mattype, octave_idx_type& info, double& rcon, int force, int calc_cond) const { Matrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr != nc || nr == 0 || nc == 0) (*current_liboctave_error_handler) ("inverse requires square matrix"); else { Array<octave_idx_type> ipvt (nr); octave_idx_type *pipvt = ipvt.fortran_vec (); retval = *this; double *tmp_data = retval.fortran_vec (); Array<double> z(1); octave_idx_type lwork = -1; // Query the optimum work array size. F77_XFCN (dgetri, DGETRI, (nc, tmp_data, nr, pipvt, z.fortran_vec (), lwork, info)); lwork = static_cast<octave_idx_type> (z(0)); lwork = (lwork < 2 *nc ? 2*nc : lwork); z.resize (lwork); double *pz = z.fortran_vec (); info = 0; // Calculate the norm of the matrix, for later use. double anorm = 0; if (calc_cond) anorm = retval.abs().sum().row(static_cast<octave_idx_type>(0)).max(); F77_XFCN (dgetrf, DGETRF, (nc, nc, tmp_data, nr, pipvt, info)); // Throw-away extra info LAPACK gives so as to not change output. rcon = 0.0; if (info != 0) info = -1; else if (calc_cond) { octave_idx_type dgecon_info = 0; // Now calculate the condition number for non-singular matrix. char job = '1'; Array<octave_idx_type> iz (nc); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (dgecon, DGECON, (F77_CONST_CHAR_ARG2 (&job, 1), nc, tmp_data, nr, anorm, rcon, pz, piz, dgecon_info F77_CHAR_ARG_LEN (1))); if (dgecon_info != 0) info = -1; } if (info == -1 && ! force) retval = *this; // Restore matrix contents. else { octave_idx_type dgetri_info = 0; F77_XFCN (dgetri, DGETRI, (nc, tmp_data, nr, pipvt, pz, lwork, dgetri_info)); if (dgetri_info != 0) info = -1; } if (info != 0) mattype.mark_as_rectangular(); } return retval; } Matrix Matrix::inverse (MatrixType &mattype, octave_idx_type& info, double& rcon, int force, int calc_cond) const { int typ = mattype.type (false); Matrix ret; if (typ == MatrixType::Unknown) typ = mattype.type (*this); if (typ == MatrixType::Upper || typ == MatrixType::Lower) ret = tinverse (mattype, info, rcon, force, calc_cond); else { if (mattype.is_hermitian ()) { CHOL chol (*this, info, calc_cond); if (info == 0) { if (calc_cond) rcon = chol.rcond (); else rcon = 1.0; ret = chol.inverse (); } else mattype.mark_as_unsymmetric (); } if (!mattype.is_hermitian ()) ret = finverse(mattype, info, rcon, force, calc_cond); if ((mattype.is_hermitian () || calc_cond) && rcon == 0.) ret = Matrix (rows (), columns (), octave_Inf); } return ret; } Matrix Matrix::pseudo_inverse (double tol) const { SVD result (*this, SVD::economy); DiagMatrix S = result.singular_values (); Matrix U = result.left_singular_matrix (); Matrix V = result.right_singular_matrix (); ColumnVector sigma = S.diag (); octave_idx_type r = sigma.length () - 1; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (tol <= 0.0) { if (nr > nc) tol = nr * sigma.elem (0) * DBL_EPSILON; else tol = nc * sigma.elem (0) * DBL_EPSILON; } while (r >= 0 && sigma.elem (r) < tol) r--; if (r < 0) return Matrix (nc, nr, 0.0); else { Matrix Ur = U.extract (0, 0, nr-1, r); DiagMatrix D = DiagMatrix (sigma.extract (0, r)) . inverse (); Matrix Vr = V.extract (0, 0, nc-1, r); return Vr * D * Ur.transpose (); } } #if defined (HAVE_FFTW3) ComplexMatrix Matrix::fourier (void) const { size_t nr = rows (); size_t nc = cols (); ComplexMatrix retval (nr, nc); size_t npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } const double *in (fortran_vec ()); Complex *out (retval.fortran_vec ()); octave_fftw::fft (in, out, npts, nsamples); return retval; } ComplexMatrix Matrix::ifourier (void) const { size_t nr = rows (); size_t nc = cols (); ComplexMatrix retval (nr, nc); size_t npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } ComplexMatrix tmp (*this); Complex *in (tmp.fortran_vec ()); Complex *out (retval.fortran_vec ()); octave_fftw::ifft (in, out, npts, nsamples); return retval; } ComplexMatrix Matrix::fourier2d (void) const { dim_vector dv(rows (), cols ()); const double *in = fortran_vec (); ComplexMatrix retval (rows (), cols ()); octave_fftw::fftNd (in, retval.fortran_vec (), 2, dv); return retval; } ComplexMatrix Matrix::ifourier2d (void) const { dim_vector dv(rows (), cols ()); ComplexMatrix retval (*this); Complex *out (retval.fortran_vec ()); octave_fftw::ifftNd (out, out, 2, dv); return retval; } #else ComplexMatrix Matrix::fourier (void) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); retval = ComplexMatrix (*this); Complex *tmp_data = retval.fortran_vec (); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type j = 0; j < nsamples; j++) { OCTAVE_QUIT; F77_FUNC (zfftf, ZFFTF) (npts, &tmp_data[npts*j], pwsave); } return retval; } ComplexMatrix Matrix::ifourier (void) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); retval = ComplexMatrix (*this); Complex *tmp_data = retval.fortran_vec (); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type j = 0; j < nsamples; j++) { OCTAVE_QUIT; F77_FUNC (zfftb, ZFFTB) (npts, &tmp_data[npts*j], pwsave); } for (octave_idx_type j = 0; j < npts*nsamples; j++) tmp_data[j] = tmp_data[j] / static_cast<double> (npts); return retval; } ComplexMatrix Matrix::fourier2d (void) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); retval = ComplexMatrix (*this); Complex *tmp_data = retval.fortran_vec (); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type j = 0; j < nsamples; j++) { OCTAVE_QUIT; F77_FUNC (zfftf, ZFFTF) (npts, &tmp_data[npts*j], pwsave); } npts = nc; nsamples = nr; nn = 4*npts+15; wsave.resize (nn); pwsave = wsave.fortran_vec (); Array<Complex> tmp (npts); Complex *prow = tmp.fortran_vec (); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type j = 0; j < nsamples; j++) { OCTAVE_QUIT; for (octave_idx_type i = 0; i < npts; i++) prow[i] = tmp_data[i*nr + j]; F77_FUNC (zfftf, ZFFTF) (npts, prow, pwsave); for (octave_idx_type i = 0; i < npts; i++) tmp_data[i*nr + j] = prow[i]; } return retval; } ComplexMatrix Matrix::ifourier2d (void) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); retval = ComplexMatrix (*this); Complex *tmp_data = retval.fortran_vec (); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type j = 0; j < nsamples; j++) { OCTAVE_QUIT; F77_FUNC (zfftb, ZFFTB) (npts, &tmp_data[npts*j], pwsave); } for (octave_idx_type j = 0; j < npts*nsamples; j++) tmp_data[j] = tmp_data[j] / static_cast<double> (npts); npts = nc; nsamples = nr; nn = 4*npts+15; wsave.resize (nn); pwsave = wsave.fortran_vec (); Array<Complex> tmp (npts); Complex *prow = tmp.fortran_vec (); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type j = 0; j < nsamples; j++) { OCTAVE_QUIT; for (octave_idx_type i = 0; i < npts; i++) prow[i] = tmp_data[i*nr + j]; F77_FUNC (zfftb, ZFFTB) (npts, prow, pwsave); for (octave_idx_type i = 0; i < npts; i++) tmp_data[i*nr + j] = prow[i] / static_cast<double> (npts); } return retval; } #endif DET Matrix::determinant (void) const { octave_idx_type info; double rcon; return determinant (info, rcon, 0); } DET Matrix::determinant (octave_idx_type& info) const { double rcon; return determinant (info, rcon, 0); } DET Matrix::determinant (octave_idx_type& info, double& rcon, int calc_cond) const { DET retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr == 0 || nc == 0) { retval = DET (1.0, 0); } else { Array<octave_idx_type> ipvt (nr); octave_idx_type *pipvt = ipvt.fortran_vec (); Matrix atmp = *this; double *tmp_data = atmp.fortran_vec (); info = 0; // Calculate the norm of the matrix, for later use. double anorm = 0; if (calc_cond) anorm = atmp.abs().sum().row(static_cast<octave_idx_type>(0)).max(); F77_XFCN (dgetrf, DGETRF, (nr, nr, tmp_data, nr, pipvt, info)); // Throw-away extra info LAPACK gives so as to not change output. rcon = 0.0; if (info != 0) { info = -1; retval = DET (); } else { if (calc_cond) { // Now calc the condition number for non-singular matrix. char job = '1'; Array<double> z (4 * nc); double *pz = z.fortran_vec (); Array<octave_idx_type> iz (nc); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (dgecon, DGECON, (F77_CONST_CHAR_ARG2 (&job, 1), nc, tmp_data, nr, anorm, rcon, pz, piz, info F77_CHAR_ARG_LEN (1))); } if (info != 0) { info = -1; retval = DET (); } else { double c = 1.0; int e = 0; for (octave_idx_type i = 0; i < nc; i++) { if (ipvt(i) != (i+1)) c = -c; c *= atmp(i,i); if (c == 0.0) break; while (fabs (c) < 0.5) { c *= 2.0; e--; } while (fabs (c) >= 2.0) { c /= 2.0; e++; } } retval = DET (c, e); } } } return retval; } double Matrix::rcond (void) const { MatrixType mattype (*this); return rcond (mattype); } double Matrix::rcond (MatrixType &mattype) const { double rcon; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr != nc) (*current_liboctave_error_handler) ("matrix must be square"); else if (nr == 0 || nc == 0) rcon = octave_Inf; else { int typ = mattype.type (); if (typ == MatrixType::Unknown) typ = mattype.type (*this); // Only calculate the condition number for LU/Cholesky if (typ == MatrixType::Upper) { const double *tmp_data = fortran_vec (); octave_idx_type info = 0; char norm = '1'; char uplo = 'U'; char dia = 'N'; Array<double> z (3 * nc); double *pz = z.fortran_vec (); Array<octave_idx_type> iz (nc); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (dtrcon, DTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1), F77_CONST_CHAR_ARG2 (&uplo, 1), F77_CONST_CHAR_ARG2 (&dia, 1), nr, tmp_data, nr, rcon, pz, piz, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info != 0) rcon = 0.0; } else if (typ == MatrixType::Permuted_Upper) (*current_liboctave_error_handler) ("permuted triangular matrix not implemented"); else if (typ == MatrixType::Lower) { const double *tmp_data = fortran_vec (); octave_idx_type info = 0; char norm = '1'; char uplo = 'L'; char dia = 'N'; Array<double> z (3 * nc); double *pz = z.fortran_vec (); Array<octave_idx_type> iz (nc); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (dtrcon, DTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1), F77_CONST_CHAR_ARG2 (&uplo, 1), F77_CONST_CHAR_ARG2 (&dia, 1), nr, tmp_data, nr, rcon, pz, piz, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info != 0) rcon = 0.0; } else if (typ == MatrixType::Permuted_Lower) (*current_liboctave_error_handler) ("permuted triangular matrix not implemented"); else if (typ == MatrixType::Full || typ == MatrixType::Hermitian) { double anorm = -1.0; Matrix atmp = *this; double *tmp_data = atmp.fortran_vec (); if (typ == MatrixType::Hermitian) { octave_idx_type info = 0; char job = 'L'; anorm = atmp.abs().sum(). row(static_cast<octave_idx_type>(0)).max(); F77_XFCN (dpotrf, DPOTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr, tmp_data, nr, info F77_CHAR_ARG_LEN (1))); if (info != 0) { rcon = 0.0; mattype.mark_as_unsymmetric (); typ = MatrixType::Full; } else { Array<double> z (3 * nc); double *pz = z.fortran_vec (); Array<octave_idx_type> iz (nc); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (dpocon, DPOCON, (F77_CONST_CHAR_ARG2 (&job, 1), nr, tmp_data, nr, anorm, rcon, pz, piz, info F77_CHAR_ARG_LEN (1))); if (info != 0) rcon = 0.0; } } if (typ == MatrixType::Full) { octave_idx_type info = 0; Array<octave_idx_type> ipvt (nr); octave_idx_type *pipvt = ipvt.fortran_vec (); if(anorm < 0.) anorm = atmp.abs().sum(). row(static_cast<octave_idx_type>(0)).max(); Array<double> z (4 * nc); double *pz = z.fortran_vec (); Array<octave_idx_type> iz (nc); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (dgetrf, DGETRF, (nr, nr, tmp_data, nr, pipvt, info)); if (info != 0) { rcon = 0.0; mattype.mark_as_rectangular (); } else { char job = '1'; F77_XFCN (dgecon, DGECON, (F77_CONST_CHAR_ARG2 (&job, 1), nc, tmp_data, nr, anorm, rcon, pz, piz, info F77_CHAR_ARG_LEN (1))); if (info != 0) rcon = 0.0; } } } else rcon = 0.0; } return rcon; } Matrix Matrix::utsolve (MatrixType &mattype, const Matrix& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler, bool calc_cond) const { Matrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = Matrix (nc, b.cols (), 0.0); else { volatile int typ = mattype.type (); if (typ == MatrixType::Permuted_Upper || typ == MatrixType::Upper) { octave_idx_type b_nc = b.cols (); rcon = 1.; info = 0; if (typ == MatrixType::Permuted_Upper) { (*current_liboctave_error_handler) ("permuted triangular matrix not implemented"); } else { const double *tmp_data = fortran_vec (); if (calc_cond) { char norm = '1'; char uplo = 'U'; char dia = 'N'; Array<double> z (3 * nc); double *pz = z.fortran_vec (); Array<octave_idx_type> iz (nc); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (dtrcon, DTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1), F77_CONST_CHAR_ARG2 (&uplo, 1), F77_CONST_CHAR_ARG2 (&dia, 1), nr, tmp_data, nr, rcon, pz, piz, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info != 0) info = -2; volatile double rcond_plus_one = rcon + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcon)) { info = -2; if (sing_handler) sing_handler (rcon); else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcon); } } if (info == 0) { retval = b; double *result = retval.fortran_vec (); char uplo = 'U'; char trans = 'N'; char dia = 'N'; F77_XFCN (dtrtrs, DTRTRS, (F77_CONST_CHAR_ARG2 (&uplo, 1), F77_CONST_CHAR_ARG2 (&trans, 1), F77_CONST_CHAR_ARG2 (&dia, 1), nr, b_nc, tmp_data, nr, result, nr, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); } } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } Matrix Matrix::ltsolve (MatrixType &mattype, const Matrix& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler, bool calc_cond) const { Matrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = Matrix (nc, b.cols (), 0.0); else { volatile int typ = mattype.type (); if (typ == MatrixType::Permuted_Lower || typ == MatrixType::Lower) { octave_idx_type b_nc = b.cols (); rcon = 1.; info = 0; if (typ == MatrixType::Permuted_Lower) { (*current_liboctave_error_handler) ("permuted triangular matrix not implemented"); } else { const double *tmp_data = fortran_vec (); if (calc_cond) { char norm = '1'; char uplo = 'L'; char dia = 'N'; Array<double> z (3 * nc); double *pz = z.fortran_vec (); Array<octave_idx_type> iz (nc); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (dtrcon, DTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1), F77_CONST_CHAR_ARG2 (&uplo, 1), F77_CONST_CHAR_ARG2 (&dia, 1), nr, tmp_data, nr, rcon, pz, piz, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info != 0) info = -2; volatile double rcond_plus_one = rcon + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcon)) { info = -2; if (sing_handler) sing_handler (rcon); else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcon); } } if (info == 0) { retval = b; double *result = retval.fortran_vec (); char uplo = 'L'; char trans = 'N'; char dia = 'N'; F77_XFCN (dtrtrs, DTRTRS, (F77_CONST_CHAR_ARG2 (&uplo, 1), F77_CONST_CHAR_ARG2 (&trans, 1), F77_CONST_CHAR_ARG2 (&dia, 1), nr, b_nc, tmp_data, nr, result, nr, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); } } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } Matrix Matrix::fsolve (MatrixType &mattype, const Matrix& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler, bool calc_cond) const { Matrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = Matrix (nc, b.cols (), 0.0); else { volatile int typ = mattype.type (); // Calculate the norm of the matrix, for later use. double anorm = -1.; if (typ == MatrixType::Hermitian) { info = 0; char job = 'L'; Matrix atmp = *this; double *tmp_data = atmp.fortran_vec (); anorm = atmp.abs().sum().row(static_cast<octave_idx_type>(0)).max(); F77_XFCN (dpotrf, DPOTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr, tmp_data, nr, info F77_CHAR_ARG_LEN (1))); // Throw-away extra info LAPACK gives so as to not change output. rcon = 0.0; if (info != 0) { info = -2; mattype.mark_as_unsymmetric (); typ = MatrixType::Full; } else { if (calc_cond) { Array<double> z (3 * nc); double *pz = z.fortran_vec (); Array<octave_idx_type> iz (nc); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (dpocon, DPOCON, (F77_CONST_CHAR_ARG2 (&job, 1), nr, tmp_data, nr, anorm, rcon, pz, piz, info F77_CHAR_ARG_LEN (1))); if (info != 0) info = -2; volatile double rcond_plus_one = rcon + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcon)) { info = -2; if (sing_handler) sing_handler (rcon); else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcon); } } if (info == 0) { retval = b; double *result = retval.fortran_vec (); octave_idx_type b_nc = b.cols (); F77_XFCN (dpotrs, DPOTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, b_nc, tmp_data, nr, result, b.rows(), info F77_CHAR_ARG_LEN (1))); } else { mattype.mark_as_unsymmetric (); typ = MatrixType::Full; } } } if (typ == MatrixType::Full) { info = 0; Array<octave_idx_type> ipvt (nr); octave_idx_type *pipvt = ipvt.fortran_vec (); Matrix atmp = *this; double *tmp_data = atmp.fortran_vec (); if(anorm < 0.) anorm = atmp.abs().sum().row(static_cast<octave_idx_type>(0)).max(); Array<double> z (4 * nc); double *pz = z.fortran_vec (); Array<octave_idx_type> iz (nc); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (dgetrf, DGETRF, (nr, nr, tmp_data, nr, pipvt, info)); // Throw-away extra info LAPACK gives so as to not change output. rcon = 0.0; if (info != 0) { info = -2; if (sing_handler) sing_handler (rcon); else (*current_liboctave_error_handler) ("matrix singular to machine precision"); mattype.mark_as_rectangular (); } else { if (calc_cond) { // Now calculate the condition number for // non-singular matrix. char job = '1'; F77_XFCN (dgecon, DGECON, (F77_CONST_CHAR_ARG2 (&job, 1), nc, tmp_data, nr, anorm, rcon, pz, piz, info F77_CHAR_ARG_LEN (1))); if (info != 0) info = -2; volatile double rcond_plus_one = rcon + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcon)) { info = -2; if (sing_handler) sing_handler (rcon); else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcon); } } if (info == 0) { retval = b; double *result = retval.fortran_vec (); octave_idx_type b_nc = b.cols (); char job = 'N'; F77_XFCN (dgetrs, DGETRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, b_nc, tmp_data, nr, pipvt, result, b.rows(), info F77_CHAR_ARG_LEN (1))); } else mattype.mark_as_rectangular (); } } else if (typ != MatrixType::Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } Matrix Matrix::solve (MatrixType &typ, const Matrix& b) const { octave_idx_type info; double rcon; return solve (typ, b, info, rcon, 0); } Matrix Matrix::solve (MatrixType &typ, const Matrix& b, octave_idx_type& info, double& rcon) const { return solve (typ, b, info, rcon, 0); } Matrix Matrix::solve (MatrixType &mattype, const Matrix& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler, bool singular_fallback) const { Matrix retval; int typ = mattype.type (); if (typ == MatrixType::Unknown) typ = mattype.type (*this); // Only calculate the condition number for LU/Cholesky if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper) retval = utsolve (mattype, b, info, rcon, sing_handler, false); else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower) retval = ltsolve (mattype, b, info, rcon, sing_handler, false); else if (typ == MatrixType::Full || typ == MatrixType::Hermitian) retval = fsolve (mattype, b, info, rcon, sing_handler, true); else if (typ != MatrixType::Rectangular) { (*current_liboctave_error_handler) ("unknown matrix type"); return Matrix (); } // Rectangular or one of the above solvers flags a singular matrix if (singular_fallback && mattype.type () == MatrixType::Rectangular) { octave_idx_type rank; retval = lssolve (b, info, rank, rcon); } return retval; } ComplexMatrix Matrix::solve (MatrixType &typ, const ComplexMatrix& b) const { ComplexMatrix tmp (*this); return tmp.solve (typ, b); } ComplexMatrix Matrix::solve (MatrixType &typ, const ComplexMatrix& b, octave_idx_type& info) const { ComplexMatrix tmp (*this); return tmp.solve (typ, b, info); } ComplexMatrix Matrix::solve (MatrixType &typ, const ComplexMatrix& b, octave_idx_type& info, double& rcon) const { ComplexMatrix tmp (*this); return tmp.solve (typ, b, info, rcon); } ComplexMatrix Matrix::solve (MatrixType &typ, const ComplexMatrix& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler, bool singular_fallback) const { ComplexMatrix tmp (*this); return tmp.solve (typ, b, info, rcon, sing_handler, singular_fallback); } ColumnVector Matrix::solve (MatrixType &typ, const ColumnVector& b) const { octave_idx_type info; double rcon; return solve (typ, b, info, rcon); } ColumnVector Matrix::solve (MatrixType &typ, const ColumnVector& b, octave_idx_type& info) const { double rcon; return solve (typ, b, info, rcon); } ColumnVector Matrix::solve (MatrixType &typ, const ColumnVector& b, octave_idx_type& info, double& rcon) const { return solve (typ, b, info, rcon, 0); } ColumnVector Matrix::solve (MatrixType &typ, const ColumnVector& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler) const { Matrix tmp (b); return solve (typ, tmp, info, rcon, sing_handler).column(static_cast<octave_idx_type> (0)); } ComplexColumnVector Matrix::solve (MatrixType &typ, const ComplexColumnVector& b) const { ComplexMatrix tmp (*this); return tmp.solve (typ, b); } ComplexColumnVector Matrix::solve (MatrixType &typ, const ComplexColumnVector& b, octave_idx_type& info) const { ComplexMatrix tmp (*this); return tmp.solve (typ, b, info); } ComplexColumnVector Matrix::solve (MatrixType &typ, const ComplexColumnVector& b, octave_idx_type& info, double& rcon) const { ComplexMatrix tmp (*this); return tmp.solve (typ, b, info, rcon); } ComplexColumnVector Matrix::solve (MatrixType &typ, const ComplexColumnVector& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler) const { ComplexMatrix tmp (*this); return tmp.solve(typ, b, info, rcon, sing_handler); } Matrix Matrix::solve (const Matrix& b) const { octave_idx_type info; double rcon; return solve (b, info, rcon, 0); } Matrix Matrix::solve (const Matrix& b, octave_idx_type& info) const { double rcon; return solve (b, info, rcon, 0); } Matrix Matrix::solve (const Matrix& b, octave_idx_type& info, double& rcon) const { return solve (b, info, rcon, 0); } Matrix Matrix::solve (const Matrix& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler) const { MatrixType mattype (*this); return solve (mattype, b, info, rcon, sing_handler); } ComplexMatrix Matrix::solve (const ComplexMatrix& b) const { ComplexMatrix tmp (*this); return tmp.solve (b); } ComplexMatrix Matrix::solve (const ComplexMatrix& b, octave_idx_type& info) const { ComplexMatrix tmp (*this); return tmp.solve (b, info); } ComplexMatrix Matrix::solve (const ComplexMatrix& b, octave_idx_type& info, double& rcon) const { ComplexMatrix tmp (*this); return tmp.solve (b, info, rcon); } ComplexMatrix Matrix::solve (const ComplexMatrix& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler) const { ComplexMatrix tmp (*this); return tmp.solve (b, info, rcon, sing_handler); } ColumnVector Matrix::solve (const ColumnVector& b) const { octave_idx_type info; double rcon; return solve (b, info, rcon); } ColumnVector Matrix::solve (const ColumnVector& b, octave_idx_type& info) const { double rcon; return solve (b, info, rcon); } ColumnVector Matrix::solve (const ColumnVector& b, octave_idx_type& info, double& rcon) const { return solve (b, info, rcon, 0); } ColumnVector Matrix::solve (const ColumnVector& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler) const { MatrixType mattype (*this); return solve (mattype, b, info, rcon, sing_handler); } ComplexColumnVector Matrix::solve (const ComplexColumnVector& b) const { ComplexMatrix tmp (*this); return tmp.solve (b); } ComplexColumnVector Matrix::solve (const ComplexColumnVector& b, octave_idx_type& info) const { ComplexMatrix tmp (*this); return tmp.solve (b, info); } ComplexColumnVector Matrix::solve (const ComplexColumnVector& b, octave_idx_type& info, double& rcon) const { ComplexMatrix tmp (*this); return tmp.solve (b, info, rcon); } ComplexColumnVector Matrix::solve (const ComplexColumnVector& b, octave_idx_type& info, double& rcon, solve_singularity_handler sing_handler) const { ComplexMatrix tmp (*this); return tmp.solve (b, info, rcon, sing_handler); } Matrix Matrix::lssolve (const Matrix& b) const { octave_idx_type info; octave_idx_type rank; double rcon; return lssolve (b, info, rank, rcon); } Matrix Matrix::lssolve (const Matrix& b, octave_idx_type& info) const { octave_idx_type rank; double rcon; return lssolve (b, info, rank, rcon); } Matrix Matrix::lssolve (const Matrix& b, octave_idx_type& info, octave_idx_type& rank) const { double rcon; return lssolve (b, info, rank, rcon); } Matrix Matrix::lssolve (const Matrix& b, octave_idx_type& info, octave_idx_type& rank, double &rcon) const { Matrix retval; octave_idx_type nrhs = b.cols (); octave_idx_type m = rows (); octave_idx_type n = cols (); if (m != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (m == 0 || n == 0 || b.cols () == 0) retval = Matrix (n, b.cols (), 0.0); else { volatile octave_idx_type minmn = (m < n ? m : n); octave_idx_type maxmn = m > n ? m : n; rcon = -1.0; if (m != n) { retval = Matrix (maxmn, nrhs, 0.0); for (octave_idx_type j = 0; j < nrhs; j++) for (octave_idx_type i = 0; i < m; i++) retval.elem (i, j) = b.elem (i, j); } else retval = b; Matrix atmp = *this; double *tmp_data = atmp.fortran_vec (); double *pretval = retval.fortran_vec (); Array<double> s (minmn); double *ps = s.fortran_vec (); // Ask DGELSD what the dimension of WORK should be. octave_idx_type lwork = -1; Array<double> work (1); octave_idx_type smlsiz; F77_FUNC (xilaenv, XILAENV) (9, F77_CONST_CHAR_ARG2 ("DGELSD", 6), F77_CONST_CHAR_ARG2 (" ", 1), 0, 0, 0, 0, smlsiz F77_CHAR_ARG_LEN (6) F77_CHAR_ARG_LEN (1)); octave_idx_type mnthr; F77_FUNC (xilaenv, XILAENV) (6, F77_CONST_CHAR_ARG2 ("DGELSD", 6), F77_CONST_CHAR_ARG2 (" ", 1), m, n, nrhs, -1, mnthr F77_CHAR_ARG_LEN (6) F77_CHAR_ARG_LEN (1)); // We compute the size of iwork because DGELSD in older versions // of LAPACK does not return it on a query call. double dminmn = static_cast<double> (minmn); double dsmlsizp1 = static_cast<double> (smlsiz+1); #if defined (HAVE_LOG2) double tmp = log2 (dminmn / dsmlsizp1); #else double tmp = log (dminmn / dsmlsizp1) / log (2.0); #endif octave_idx_type nlvl = static_cast<octave_idx_type> (tmp) + 1; if (nlvl < 0) nlvl = 0; octave_idx_type liwork = 3 * minmn * nlvl + 11 * minmn; if (liwork < 1) liwork = 1; Array<octave_idx_type> iwork (liwork); octave_idx_type* piwork = iwork.fortran_vec (); F77_XFCN (dgelsd, DGELSD, (m, n, nrhs, tmp_data, m, pretval, maxmn, ps, rcon, rank, work.fortran_vec (), lwork, piwork, info)); // The workspace query is broken in at least LAPACK 3.0.0 // through 3.1.1 when n >= mnthr. The obtuse formula below // should provide sufficient workspace for DGELSD to operate // efficiently. if (n >= mnthr) { const octave_idx_type wlalsd = 9*m + 2*m*smlsiz + 8*m*nlvl + m*nrhs + (smlsiz+1)*(smlsiz+1); octave_idx_type addend = m; if (2*m-4 > addend) addend = 2*m-4; if (nrhs > addend) addend = nrhs; if (n-3*m > addend) addend = n-3*m; if (wlalsd > addend) addend = wlalsd; const octave_idx_type lworkaround = 4*m + m*m + addend; if (work(0) < lworkaround) work(0) = lworkaround; } else if (m >= n) { octave_idx_type lworkaround = 12*n + 2*n*smlsiz + 8*n*nlvl + n*nrhs + (smlsiz+1)*(smlsiz+1); if (work(0) < lworkaround) work(0) = lworkaround; } lwork = static_cast<octave_idx_type> (work(0)); work.resize (lwork); F77_XFCN (dgelsd, DGELSD, (m, n, nrhs, tmp_data, m, pretval, maxmn, ps, rcon, rank, work.fortran_vec (), lwork, piwork, info)); if (rank < minmn) (*current_liboctave_warning_handler) ("dgelsd: rank deficient %dx%d matrix, rank = %d", m, n, rank); if (s.elem (0) == 0.0) rcon = 0.0; else rcon = s.elem (minmn - 1) / s.elem (0); retval.resize (n, nrhs); } return retval; } ComplexMatrix Matrix::lssolve (const ComplexMatrix& b) const { ComplexMatrix tmp (*this); octave_idx_type info; octave_idx_type rank; double rcon; return tmp.lssolve (b, info, rank, rcon); } ComplexMatrix Matrix::lssolve (const ComplexMatrix& b, octave_idx_type& info) const { ComplexMatrix tmp (*this); octave_idx_type rank; double rcon; return tmp.lssolve (b, info, rank, rcon); } ComplexMatrix Matrix::lssolve (const ComplexMatrix& b, octave_idx_type& info, octave_idx_type& rank) const { ComplexMatrix tmp (*this); double rcon; return tmp.lssolve (b, info, rank, rcon); } ComplexMatrix Matrix::lssolve (const ComplexMatrix& b, octave_idx_type& info, octave_idx_type& rank, double& rcon) const { ComplexMatrix tmp (*this); return tmp.lssolve (b, info, rank, rcon); } ColumnVector Matrix::lssolve (const ColumnVector& b) const { octave_idx_type info; octave_idx_type rank; double rcon; return lssolve (b, info, rank, rcon); } ColumnVector Matrix::lssolve (const ColumnVector& b, octave_idx_type& info) const { octave_idx_type rank; double rcon; return lssolve (b, info, rank, rcon); } ColumnVector Matrix::lssolve (const ColumnVector& b, octave_idx_type& info, octave_idx_type& rank) const { double rcon; return lssolve (b, info, rank, rcon); } ColumnVector Matrix::lssolve (const ColumnVector& b, octave_idx_type& info, octave_idx_type& rank, double &rcon) const { ColumnVector retval; octave_idx_type nrhs = 1; octave_idx_type m = rows (); octave_idx_type n = cols (); if (m != b.length ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (m == 0 || n == 0) retval = ColumnVector (n, 0.0); else { volatile octave_idx_type minmn = (m < n ? m : n); octave_idx_type maxmn = m > n ? m : n; rcon = -1.0; if (m != n) { retval = ColumnVector (maxmn, 0.0); for (octave_idx_type i = 0; i < m; i++) retval.elem (i) = b.elem (i); } else retval = b; Matrix atmp = *this; double *tmp_data = atmp.fortran_vec (); double *pretval = retval.fortran_vec (); Array<double> s (minmn); double *ps = s.fortran_vec (); // Ask DGELSD what the dimension of WORK should be. octave_idx_type lwork = -1; Array<double> work (1); octave_idx_type smlsiz; F77_FUNC (xilaenv, XILAENV) (9, F77_CONST_CHAR_ARG2 ("DGELSD", 6), F77_CONST_CHAR_ARG2 (" ", 1), 0, 0, 0, 0, smlsiz F77_CHAR_ARG_LEN (6) F77_CHAR_ARG_LEN (1)); // We compute the size of iwork because DGELSD in older versions // of LAPACK does not return it on a query call. double dminmn = static_cast<double> (minmn); double dsmlsizp1 = static_cast<double> (smlsiz+1); #if defined (HAVE_LOG2) double tmp = log2 (dminmn / dsmlsizp1); #else double tmp = log (dminmn / dsmlsizp1) / log (2.0); #endif octave_idx_type nlvl = static_cast<octave_idx_type> (tmp) + 1; if (nlvl < 0) nlvl = 0; octave_idx_type liwork = 3 * minmn * nlvl + 11 * minmn; if (liwork < 1) liwork = 1; Array<octave_idx_type> iwork (liwork); octave_idx_type* piwork = iwork.fortran_vec (); F77_XFCN (dgelsd, DGELSD, (m, n, nrhs, tmp_data, m, pretval, maxmn, ps, rcon, rank, work.fortran_vec (), lwork, piwork, info)); lwork = static_cast<octave_idx_type> (work(0)); work.resize (lwork); F77_XFCN (dgelsd, DGELSD, (m, n, nrhs, tmp_data, m, pretval, maxmn, ps, rcon, rank, work.fortran_vec (), lwork, piwork, info)); if (rank < minmn) { if (rank < minmn) (*current_liboctave_warning_handler) ("dgelsd: rank deficient %dx%d matrix, rank = %d", m, n, rank); if (s.elem (0) == 0.0) rcon = 0.0; else rcon = s.elem (minmn - 1) / s.elem (0); } retval.resize (n, nrhs); } return retval; } ComplexColumnVector Matrix::lssolve (const ComplexColumnVector& b) const { ComplexMatrix tmp (*this); octave_idx_type info; octave_idx_type rank; double rcon; return tmp.lssolve (b, info, rank, rcon); } ComplexColumnVector Matrix::lssolve (const ComplexColumnVector& b, octave_idx_type& info) const { ComplexMatrix tmp (*this); octave_idx_type rank; double rcon; return tmp.lssolve (b, info, rank, rcon); } ComplexColumnVector Matrix::lssolve (const ComplexColumnVector& b, octave_idx_type& info, octave_idx_type& rank) const { ComplexMatrix tmp (*this); double rcon; return tmp.lssolve (b, info, rank, rcon); } ComplexColumnVector Matrix::lssolve (const ComplexColumnVector& b, octave_idx_type& info, octave_idx_type& rank, double &rcon) const { ComplexMatrix tmp (*this); return tmp.lssolve (b, info, rank, rcon); } // Constants for matrix exponential calculation. static double padec [] = { 5.0000000000000000e-1, 1.1666666666666667e-1, 1.6666666666666667e-2, 1.6025641025641026e-3, 1.0683760683760684e-4, 4.8562548562548563e-6, 1.3875013875013875e-7, 1.9270852604185938e-9, }; static void solve_singularity_warning (double rcon) { (*current_liboctave_warning_handler) ("singular matrix encountered in expm calculation, rcond = %g", rcon); } Matrix Matrix::expm (void) const { Matrix retval; Matrix m = *this; if (numel () == 1) return Matrix (1, 1, exp (m(0))); octave_idx_type nc = columns (); // Preconditioning step 1: trace normalization to reduce dynamic // range of poles, but avoid making stable eigenvalues unstable. // trace shift value volatile double trshift = 0.0; for (octave_idx_type i = 0; i < nc; i++) trshift += m.elem (i, i); trshift /= nc; if (trshift > 0.0) { for (octave_idx_type i = 0; i < nc; i++) m.elem (i, i) -= trshift; } // Preconditioning step 2: balancing; code follows development // in AEPBAL double *p_m = m.fortran_vec (); octave_idx_type info, ilo, ihi, ilos, ihis; Array<double> dpermute (nc); Array<double> dscale (nc); // permutation first char job = 'P'; F77_XFCN (dgebal, DGEBAL, (F77_CONST_CHAR_ARG2 (&job, 1), nc, p_m, nc, ilo, ihi, dpermute.fortran_vec (), info F77_CHAR_ARG_LEN (1))); // then scaling job = 'S'; F77_XFCN (dgebal, DGEBAL, (F77_CONST_CHAR_ARG2 (&job, 1), nc, p_m, nc, ilos, ihis, dscale.fortran_vec (), info F77_CHAR_ARG_LEN (1))); // Preconditioning step 3: scaling. ColumnVector work(nc); double inf_norm; F77_XFCN (xdlange, XDLANGE, (F77_CONST_CHAR_ARG2 ("I", 1), nc, nc, m.fortran_vec (), nc, work.fortran_vec (), inf_norm F77_CHAR_ARG_LEN (1))); octave_idx_type sqpow = static_cast<octave_idx_type> (inf_norm > 0.0 ? (1.0 + log (inf_norm) / log (2.0)) : 0.0); // Check whether we need to square at all. if (sqpow < 0) sqpow = 0; if (sqpow > 0) { if (sqpow > 1023) sqpow = 1023; double scale_factor = 1.0; for (octave_idx_type i = 0; i < sqpow; i++) scale_factor *= 2.0; m = m / scale_factor; } // npp, dpp: pade' approx polynomial matrices. Matrix npp (nc, nc, 0.0); double *pnpp = npp.fortran_vec (); Matrix dpp = npp; double *pdpp = dpp.fortran_vec (); // Now powers a^8 ... a^1. octave_idx_type minus_one_j = -1; for (octave_idx_type j = 7; j >= 0; j--) { for (octave_idx_type i = 0; i < nc; i++) { octave_idx_type k = i * nc + i; pnpp[k] += padec[j]; pdpp[k] += minus_one_j * padec[j]; } npp = m * npp; pnpp = npp.fortran_vec (); dpp = m * dpp; pdpp = dpp.fortran_vec (); minus_one_j *= -1; } // Zero power. dpp = -dpp; for (octave_idx_type j = 0; j < nc; j++) { npp.elem (j, j) += 1.0; dpp.elem (j, j) += 1.0; } // Compute pade approximation = inverse (dpp) * npp. double rcon; retval = dpp.solve (npp, info, rcon, solve_singularity_warning); if (info < 0) return retval; // Reverse preconditioning step 3: repeated squaring. while (sqpow) { retval = retval * retval; sqpow--; } // Reverse preconditioning step 2: inverse balancing. // apply inverse scaling to computed exponential for (octave_idx_type i = 0; i < nc; i++) for (octave_idx_type j = 0; j < nc; j++) retval(i,j) *= dscale(i) / dscale(j); OCTAVE_QUIT; // construct balancing permutation vector Array<octave_idx_type> iperm (nc); for (octave_idx_type i = 0; i < nc; i++) iperm(i) = i; // identity permutation // leading permutations in forward order for (octave_idx_type i = 0; i < (ilo-1); i++) { octave_idx_type swapidx = static_cast<octave_idx_type> (dpermute(i)) - 1; octave_idx_type tmp = iperm(i); iperm(i) = iperm (swapidx); iperm(swapidx) = tmp; } // construct inverse balancing permutation vector Array<octave_idx_type> invpvec (nc); for (octave_idx_type i = 0; i < nc; i++) invpvec(iperm(i)) = i; // Thanks to R. A. Lippert for this method OCTAVE_QUIT; Matrix tmpMat = retval; for (octave_idx_type i = 0; i < nc; i++) for (octave_idx_type j = 0; j < nc; j++) retval(i,j) = tmpMat(invpvec(i),invpvec(j)); OCTAVE_QUIT; for (octave_idx_type i = 0; i < nc; i++) iperm(i) = i; // identity permutation // trailing permutations must be done in reverse order for (octave_idx_type i = nc - 1; i >= ihi; i--) { octave_idx_type swapidx = static_cast<octave_idx_type> (dpermute(i)) - 1; octave_idx_type tmp = iperm(i); iperm(i) = iperm(swapidx); iperm(swapidx) = tmp; } // construct inverse balancing permutation vector for (octave_idx_type i = 0; i < nc; i++) invpvec(iperm(i)) = i; // Thanks to R. A. Lippert for this method OCTAVE_QUIT; tmpMat = retval; for (octave_idx_type i = 0; i < nc; i++) for (octave_idx_type j = 0; j < nc; j++) retval(i,j) = tmpMat(invpvec(i),invpvec(j)); // Reverse preconditioning step 1: fix trace normalization. if (trshift > 0.0) retval = exp (trshift) * retval; return retval; } Matrix& Matrix::operator += (const DiagMatrix& a) { octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); if (nr != a_nr || nc != a_nc) { gripe_nonconformant ("operator +=", nr, nc, a_nr, a_nc); return *this; } for (octave_idx_type i = 0; i < a.length (); i++) elem (i, i) += a.elem (i, i); return *this; } Matrix& Matrix::operator -= (const DiagMatrix& a) { octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); if (nr != a_nr || nc != a_nc) { gripe_nonconformant ("operator -=", nr, nc, a_nr, a_nc); return *this; } for (octave_idx_type i = 0; i < a.length (); i++) elem (i, i) -= a.elem (i, i); return *this; } // unary operations boolMatrix Matrix::operator ! (void) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); boolMatrix b (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) b.elem (i, j) = ! elem (i, j); return b; } // column vector by row vector -> matrix operations Matrix operator * (const ColumnVector& v, const RowVector& a) { Matrix retval; octave_idx_type len = v.length (); if (len != 0) { octave_idx_type a_len = a.length (); retval.resize (len, a_len); double *c = retval.fortran_vec (); F77_XFCN (dgemm, DGEMM, (F77_CONST_CHAR_ARG2 ("N", 1), F77_CONST_CHAR_ARG2 ("N", 1), len, a_len, 1, 1.0, v.data (), len, a.data (), 1, 0.0, c, len F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); } return retval; } // other operations. Matrix Matrix::map (dmapper fcn) const { return MArray2<double>::map<double> (func_ptr (fcn)); } ComplexMatrix Matrix::map (cmapper fcn) const { return MArray2<double>::map<Complex> (func_ptr (fcn)); } boolMatrix Matrix::map (bmapper fcn) const { return MArray2<double>::map<bool> (func_ptr (fcn)); } bool Matrix::any_element_is_negative (bool neg_zero) const { octave_idx_type nel = nelem (); if (neg_zero) { for (octave_idx_type i = 0; i < nel; i++) if (lo_ieee_signbit (elem (i))) return true; } else { for (octave_idx_type i = 0; i < nel; i++) if (elem (i) < 0) return true; } return false; } bool Matrix::any_element_is_inf_or_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { double val = elem (i); if (xisinf (val) || xisnan (val)) return true; } return false; } bool Matrix::any_element_not_one_or_zero (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { double val = elem (i); if (val != 0 && val != 1) return true; } return false; } bool Matrix::all_elements_are_int_or_inf_or_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { double val = elem (i); if (xisnan (val) || D_NINT (val) == val) continue; else return false; } return true; } // Return nonzero if any element of M is not an integer. Also extract // the largest and smallest values and return them in MAX_VAL and MIN_VAL. bool Matrix::all_integers (double& max_val, double& min_val) const { octave_idx_type nel = nelem (); if (nel > 0) { max_val = elem (0); min_val = elem (0); } else return false; for (octave_idx_type i = 0; i < nel; i++) { double val = elem (i); if (val > max_val) max_val = val; if (val < min_val) min_val = val; if (D_NINT (val) != val) return false; } return true; } bool Matrix::too_large_for_float (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { double val = elem (i); if (! (xisnan (val) || xisinf (val)) && fabs (val) > FLT_MAX) return true; } return false; } // FIXME Do these really belong here? Maybe they should be // in a base class? boolMatrix Matrix::all (int dim) const { MX_ALL_OP (dim); } boolMatrix Matrix::any (int dim) const { MX_ANY_OP (dim); } Matrix Matrix::cumprod (int dim) const { MX_CUMULATIVE_OP (Matrix, double, *=); } Matrix Matrix::cumsum (int dim) const { MX_CUMULATIVE_OP (Matrix, double, +=); } Matrix Matrix::prod (int dim) const { MX_REDUCTION_OP (Matrix, *=, 1.0, 1.0); } Matrix Matrix::sum (int dim) const { MX_REDUCTION_OP (Matrix, +=, 0.0, 0.0); } Matrix Matrix::sumsq (int dim) const { #define ROW_EXPR \ double d = elem (i, j); \ retval.elem (i, 0) += d * d #define COL_EXPR \ double d = elem (i, j); \ retval.elem (0, j) += d * d MX_BASE_REDUCTION_OP (Matrix, ROW_EXPR, COL_EXPR, 0.0, 0.0); #undef ROW_EXPR #undef COL_EXPR } Matrix Matrix::abs (void) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); Matrix retval (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval (i, j) = fabs (elem (i, j)); return retval; } Matrix Matrix::diag (octave_idx_type k) const { return MArray2<double>::diag (k); } ColumnVector Matrix::row_min (void) const { Array<octave_idx_type> dummy_idx; return row_min (dummy_idx); } ColumnVector Matrix::row_min (Array<octave_idx_type>& idx_arg) const { ColumnVector result; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr > 0 && nc > 0) { result.resize (nr); idx_arg.resize (nr); for (octave_idx_type i = 0; i < nr; i++) { octave_idx_type idx_j; double tmp_min = octave_NaN; for (idx_j = 0; idx_j < nc; idx_j++) { tmp_min = elem (i, idx_j); if (! xisnan (tmp_min)) break; } for (octave_idx_type j = idx_j+1; j < nc; j++) { double tmp = elem (i, j); if (xisnan (tmp)) continue; else if (tmp < tmp_min) { idx_j = j; tmp_min = tmp; } } result.elem (i) = tmp_min; idx_arg.elem (i) = xisnan (tmp_min) ? 0 : idx_j; } } return result; } ColumnVector Matrix::row_max (void) const { Array<octave_idx_type> dummy_idx; return row_max (dummy_idx); } ColumnVector Matrix::row_max (Array<octave_idx_type>& idx_arg) const { ColumnVector result; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr > 0 && nc > 0) { result.resize (nr); idx_arg.resize (nr); for (octave_idx_type i = 0; i < nr; i++) { octave_idx_type idx_j; double tmp_max = octave_NaN; for (idx_j = 0; idx_j < nc; idx_j++) { tmp_max = elem (i, idx_j); if (! xisnan (tmp_max)) break; } for (octave_idx_type j = idx_j+1; j < nc; j++) { double tmp = elem (i, j); if (xisnan (tmp)) continue; else if (tmp > tmp_max) { idx_j = j; tmp_max = tmp; } } result.elem (i) = tmp_max; idx_arg.elem (i) = xisnan (tmp_max) ? 0 : idx_j; } } return result; } RowVector Matrix::column_min (void) const { Array<octave_idx_type> dummy_idx; return column_min (dummy_idx); } RowVector Matrix::column_min (Array<octave_idx_type>& idx_arg) const { RowVector result; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr > 0 && nc > 0) { result.resize (nc); idx_arg.resize (nc); for (octave_idx_type j = 0; j < nc; j++) { octave_idx_type idx_i; double tmp_min = octave_NaN; for (idx_i = 0; idx_i < nr; idx_i++) { tmp_min = elem (idx_i, j); if (! xisnan (tmp_min)) break; } for (octave_idx_type i = idx_i+1; i < nr; i++) { double tmp = elem (i, j); if (xisnan (tmp)) continue; else if (tmp < tmp_min) { idx_i = i; tmp_min = tmp; } } result.elem (j) = tmp_min; idx_arg.elem (j) = xisnan (tmp_min) ? 0 : idx_i; } } return result; } RowVector Matrix::column_max (void) const { Array<octave_idx_type> dummy_idx; return column_max (dummy_idx); } RowVector Matrix::column_max (Array<octave_idx_type>& idx_arg) const { RowVector result; octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr > 0 && nc > 0) { result.resize (nc); idx_arg.resize (nc); for (octave_idx_type j = 0; j < nc; j++) { octave_idx_type idx_i; double tmp_max = octave_NaN; for (idx_i = 0; idx_i < nr; idx_i++) { tmp_max = elem (idx_i, j); if (! xisnan (tmp_max)) break; } for (octave_idx_type i = idx_i+1; i < nr; i++) { double tmp = elem (i, j); if (xisnan (tmp)) continue; else if (tmp > tmp_max) { idx_i = i; tmp_max = tmp; } } result.elem (j) = tmp_max; idx_arg.elem (j) = xisnan (tmp_max) ? 0 : idx_i; } } return result; } std::ostream& operator << (std::ostream& os, const Matrix& a) { for (octave_idx_type i = 0; i < a.rows (); i++) { for (octave_idx_type j = 0; j < a.cols (); j++) { os << " "; octave_write_double (os, a.elem (i, j)); } os << "\n"; } return os; } std::istream& operator >> (std::istream& is, Matrix& a) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); if (nr < 1 || nc < 1) is.clear (std::ios::badbit); else { double tmp; for (octave_idx_type i = 0; i < nr; i++) for (octave_idx_type j = 0; j < nc; j++) { tmp = octave_read_double (is); if (is) a.elem (i, j) = tmp; else goto done; } } done: return is; } Matrix Givens (double x, double y) { double cc, s, temp_r; F77_FUNC (dlartg, DLARTG) (x, y, cc, s, temp_r); Matrix g (2, 2); g.elem (0, 0) = cc; g.elem (1, 1) = cc; g.elem (0, 1) = s; g.elem (1, 0) = -s; return g; } Matrix Sylvester (const Matrix& a, const Matrix& b, const Matrix& c) { Matrix retval; // FIXME -- need to check that a, b, and c are all the same // size. // Compute Schur decompositions. SCHUR as (a, "U"); SCHUR bs (b, "U"); // Transform c to new coordinates. Matrix ua = as.unitary_matrix (); Matrix sch_a = as.schur_matrix (); Matrix ub = bs.unitary_matrix (); Matrix sch_b = bs.schur_matrix (); Matrix cx = ua.transpose () * c * ub; // Solve the sylvester equation, back-transform, and return the // solution. octave_idx_type a_nr = a.rows (); octave_idx_type b_nr = b.rows (); double scale; octave_idx_type info; double *pa = sch_a.fortran_vec (); double *pb = sch_b.fortran_vec (); double *px = cx.fortran_vec (); F77_XFCN (dtrsyl, DTRSYL, (F77_CONST_CHAR_ARG2 ("N", 1), F77_CONST_CHAR_ARG2 ("N", 1), 1, a_nr, b_nr, pa, a_nr, pb, b_nr, px, a_nr, scale, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); // FIXME -- check info? retval = -ua*cx*ub.transpose (); return retval; } // matrix by matrix -> matrix operations /* Simple Dot Product, Matrix-Vector and Matrix-Matrix Unit tests %!assert([1 2 3] * [ 4 ; 5 ; 6], 32, 1e-14) %!assert([1 2 ; 3 4 ] * [5 ; 6], [17 ; 39 ], 1e-14) %!assert([1 2 ; 3 4 ] * [5 6 ; 7 8], [19 22; 43 50], 1e-14) */ /* Test some simple identities %!shared M, cv, rv %! M = randn(10,10); %! cv = randn(10,1); %! rv = randn(1,10); %!assert([M*cv,M*cv],M*[cv,cv],1e-14) %!assert([rv*M;rv*M],[rv;rv]*M,1e-14) %!assert(2*rv*cv,[rv,rv]*[cv;cv],1e-14) */ static const char * get_blas_trans_arg (bool trans) { static char blas_notrans = 'N', blas_trans = 'T'; return (trans) ? &blas_trans : &blas_notrans; } // the general GEMM operation Matrix xgemm (bool transa, const Matrix& a, bool transb, const Matrix& b) { Matrix retval; octave_idx_type a_nr = transa ? a.cols () : a.rows (); octave_idx_type a_nc = transa ? a.rows () : a.cols (); octave_idx_type b_nr = transb ? b.cols () : b.rows (); octave_idx_type b_nc = transb ? b.rows () : b.cols (); if (a_nc != b_nr) gripe_nonconformant ("operator *", a_nr, a_nc, b_nr, b_nc); else { if (a_nr == 0 || a_nc == 0 || b_nc == 0) retval.resize (a_nr, b_nc, 0.0); else if (a.data () == b.data () && a_nr == b_nc && transa != transb) { octave_idx_type lda = a.rows (); retval.resize (a_nr, b_nc); double *c = retval.fortran_vec (); const char *ctransa = get_blas_trans_arg (transa); F77_XFCN (dsyrk, DSYRK, (F77_CONST_CHAR_ARG2 ("U", 1), F77_CONST_CHAR_ARG2 (ctransa, 1), a_nr, a_nc, 1.0, a.data (), lda, 0.0, c, a_nr F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); for (int j = 0; j < a_nr; j++) for (int i = 0; i < j; i++) retval.xelem (j,i) = retval.xelem (i,j); } else { octave_idx_type lda = a.rows (), tda = a.cols (); octave_idx_type ldb = b.rows (), tdb = b.cols (); retval.resize (a_nr, b_nc); double *c = retval.fortran_vec (); if (b_nc == 1) { if (a_nr == 1) F77_FUNC (xddot, XDDOT) (a_nc, a.data (), 1, b.data (), 1, *c); else { const char *ctransa = get_blas_trans_arg (transa); F77_XFCN (dgemv, DGEMV, (F77_CONST_CHAR_ARG2 (ctransa, 1), lda, tda, 1.0, a.data (), lda, b.data (), 1, 0.0, c, 1 F77_CHAR_ARG_LEN (1))); } } else if (a_nr == 1) { const char *crevtransb = get_blas_trans_arg (! transb); F77_XFCN (dgemv, DGEMV, (F77_CONST_CHAR_ARG2 (crevtransb, 1), ldb, tdb, 1.0, b.data (), ldb, a.data (), 1, 0.0, c, 1 F77_CHAR_ARG_LEN (1))); } else { const char *ctransa = get_blas_trans_arg (transa); const char *ctransb = get_blas_trans_arg (transb); F77_XFCN (dgemm, DGEMM, (F77_CONST_CHAR_ARG2 (ctransa, 1), F77_CONST_CHAR_ARG2 (ctransb, 1), a_nr, b_nc, a_nc, 1.0, a.data (), lda, b.data (), ldb, 0.0, c, a_nr F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); } } } return retval; } Matrix operator * (const Matrix& a, const Matrix& b) { return xgemm (false, a, false, b); } // FIXME -- it would be nice to share code among the min/max // functions below. #define EMPTY_RETURN_CHECK(T) \ if (nr == 0 || nc == 0) \ return T (nr, nc); Matrix min (double d, const Matrix& m) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.columns (); EMPTY_RETURN_CHECK (Matrix); Matrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; result (i, j) = xmin (d, m (i, j)); } return result; } Matrix min (const Matrix& m, double d) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.columns (); EMPTY_RETURN_CHECK (Matrix); Matrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; result (i, j) = xmin (m (i, j), d); } return result; } Matrix min (const Matrix& a, const Matrix& b) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.columns (); if (nr != b.rows () || nc != b.columns ()) { (*current_liboctave_error_handler) ("two-arg min expecting args of same size"); return Matrix (); } EMPTY_RETURN_CHECK (Matrix); Matrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; result (i, j) = xmin (a (i, j), b (i, j)); } return result; } Matrix max (double d, const Matrix& m) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.columns (); EMPTY_RETURN_CHECK (Matrix); Matrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; result (i, j) = xmax (d, m (i, j)); } return result; } Matrix max (const Matrix& m, double d) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.columns (); EMPTY_RETURN_CHECK (Matrix); Matrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; result (i, j) = xmax (m (i, j), d); } return result; } Matrix max (const Matrix& a, const Matrix& b) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.columns (); if (nr != b.rows () || nc != b.columns ()) { (*current_liboctave_error_handler) ("two-arg max expecting args of same size"); return Matrix (); } EMPTY_RETURN_CHECK (Matrix); Matrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; result (i, j) = xmax (a (i, j), b (i, j)); } return result; } MS_CMP_OPS(Matrix, , double, ) MS_BOOL_OPS(Matrix, double, 0.0) SM_CMP_OPS(double, , Matrix, ) SM_BOOL_OPS(double, Matrix, 0.0) MM_CMP_OPS(Matrix, , Matrix, ) MM_BOOL_OPS(Matrix, Matrix, 0.0) /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */