Mercurial > hg > octave-nkf
view liboctave/floatCHOL.cc @ 7893:eb9ccb44ea41
make regexp(...,'once') matlab compatible
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Wed, 18 Jun 2008 21:00:06 +0200 |
parents | 82be108cc558 |
children | 25bc2d31e1bf |
line wrap: on
line source
/* Copyright (C) 1994, 1995, 1996, 1997, 2002, 2003, 2004, 2005, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ // updating/downdating by Jaroslav Hajek 2008 #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <vector> #include "fRowVector.h" #include "floatCHOL.h" #include "f77-fcn.h" #include "lo-error.h" extern "C" { F77_RET_T F77_FUNC (spotrf, SPOTRF) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, float*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (spotri, SPOTRI) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, float*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (spocon, SPOCON) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, float*, const octave_idx_type&, const float&, float&, float*, octave_idx_type*, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (sch1up, SCH1UP) (const octave_idx_type&, float*, float*, float*); F77_RET_T F77_FUNC (sch1dn, SCH1DN) (const octave_idx_type&, float*, float*, float*, octave_idx_type&); F77_RET_T F77_FUNC (sqrshc, SQRSHC) (const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, float*, float*, const octave_idx_type&, const octave_idx_type&); F77_RET_T F77_FUNC (schinx, SCHINX) (const octave_idx_type&, const float*, float*, const octave_idx_type&, const float*, octave_idx_type&); F77_RET_T F77_FUNC (schdex, SCHDEX) (const octave_idx_type&, const float*, float*, const octave_idx_type&); } octave_idx_type FloatCHOL::init (const FloatMatrix& a, bool calc_cond) { octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); if (a_nr != a_nc) { (*current_liboctave_error_handler) ("FloatCHOL requires square matrix"); return -1; } octave_idx_type n = a_nc; octave_idx_type info; chol_mat = a; float *h = chol_mat.fortran_vec (); // Calculate the norm of the matrix, for later use. float anorm = 0; if (calc_cond) anorm = chol_mat.abs().sum().row(static_cast<octave_idx_type>(0)).max(); F77_XFCN (spotrf, SPOTRF, (F77_CONST_CHAR_ARG2 ("U", 1), n, h, n, info F77_CHAR_ARG_LEN (1))); xrcond = 0.0; if (info != 0) info = -1; else if (calc_cond) { octave_idx_type spocon_info = 0; // Now calculate the condition number for non-singular matrix. Array<float> z (3*n); float *pz = z.fortran_vec (); Array<octave_idx_type> iz (n); octave_idx_type *piz = iz.fortran_vec (); F77_XFCN (spocon, SPOCON, (F77_CONST_CHAR_ARG2 ("U", 1), n, h, n, anorm, xrcond, pz, piz, spocon_info F77_CHAR_ARG_LEN (1))); if (spocon_info != 0) info = -1; } else { // If someone thinks of a more graceful way of doing this (or // faster for that matter :-)), please let me know! if (n > 1) for (octave_idx_type j = 0; j < a_nc; j++) for (octave_idx_type i = j+1; i < a_nr; i++) chol_mat.xelem (i, j) = 0.0; } return info; } static FloatMatrix chol2inv_internal (const FloatMatrix& r) { FloatMatrix retval; octave_idx_type r_nr = r.rows (); octave_idx_type r_nc = r.cols (); if (r_nr == r_nc) { octave_idx_type n = r_nc; octave_idx_type info = 0; FloatMatrix tmp = r; float *v = tmp.fortran_vec(); if (info == 0) { F77_XFCN (spotri, SPOTRI, (F77_CONST_CHAR_ARG2 ("U", 1), n, v, n, info F77_CHAR_ARG_LEN (1))); // If someone thinks of a more graceful way of doing this (or // faster for that matter :-)), please let me know! if (n > 1) for (octave_idx_type j = 0; j < r_nc; j++) for (octave_idx_type i = j+1; i < r_nr; i++) tmp.xelem (i, j) = tmp.xelem (j, i); retval = tmp; } } else (*current_liboctave_error_handler) ("chol2inv requires square matrix"); return retval; } // Compute the inverse of a matrix using the Cholesky factorization. FloatMatrix FloatCHOL::inverse (void) const { return chol2inv_internal (chol_mat); } void FloatCHOL::set (const FloatMatrix& R) { if (R.is_square ()) chol_mat = R; else (*current_liboctave_error_handler) ("FloatCHOL requires square matrix"); } void FloatCHOL::update (const FloatMatrix& u) { octave_idx_type n = chol_mat.rows (); if (u.length () == n) { FloatMatrix tmp = u; OCTAVE_LOCAL_BUFFER (float, w, n); F77_XFCN (sch1up, SCH1UP, (n, chol_mat.fortran_vec (), tmp.fortran_vec (), w)); } else (*current_liboctave_error_handler) ("FloatCHOL update dimension mismatch"); } octave_idx_type FloatCHOL::downdate (const FloatMatrix& u) { octave_idx_type info = -1; octave_idx_type n = chol_mat.rows (); if (u.length () == n) { FloatMatrix tmp = u; OCTAVE_LOCAL_BUFFER (float, w, n); F77_XFCN (sch1dn, SCH1DN, (n, chol_mat.fortran_vec (), tmp.fortran_vec (), w, info)); } else (*current_liboctave_error_handler) ("FloatCHOL downdate dimension mismatch"); return info; } octave_idx_type FloatCHOL::insert_sym (const FloatMatrix& u, octave_idx_type j) { octave_idx_type info = -1; octave_idx_type n = chol_mat.rows (); if (u.length () != n+1) (*current_liboctave_error_handler) ("FloatCHOL insert dimension mismatch"); else if (j < 0 || j > n) (*current_liboctave_error_handler) ("FloatCHOL insert index out of range"); else { FloatMatrix chol_mat1 (n+1, n+1); F77_XFCN (schinx, SCHINX, (n, chol_mat.data (), chol_mat1.fortran_vec (), j+1, u.data (), info)); chol_mat = chol_mat1; } return info; } void FloatCHOL::delete_sym (octave_idx_type j) { octave_idx_type n = chol_mat.rows (); if (j < 0 || j > n-1) (*current_liboctave_error_handler) ("FloatCHOL delete index out of range"); else { FloatMatrix chol_mat1 (n-1, n-1); F77_XFCN (schdex, SCHDEX, (n, chol_mat.data (), chol_mat1.fortran_vec (), j+1)); chol_mat = chol_mat1; } } void FloatCHOL::shift_sym (octave_idx_type i, octave_idx_type j) { octave_idx_type n = chol_mat.rows (); float dummy; if (i < 0 || i > n-1 || j < 0 || j > n-1) (*current_liboctave_error_handler) ("FloatCHOL shift index out of range"); else F77_XFCN (sqrshc, SQRSHC, (0, n, n, &dummy, chol_mat.fortran_vec (), i+1, j+1)); } FloatMatrix chol2inv (const FloatMatrix& r) { return chol2inv_internal (r); } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */