Mercurial > hg > octave-nkf
view scripts/control/dlyap.m @ 3383:ebf69eb3d07d
[project @ 1999-12-15 21:27:56 by jwe]
author | jwe |
---|---|
date | Wed, 15 Dec 1999 21:28:01 +0000 |
parents | 69b167451491 |
children | 1a8e2c0d627a |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995 Auburn University. All Rights Reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} = } dlyap (@var{a}, @var{b}) ## Solve the discrete-time Lyapunov equation ## ## @strong{Inputs} ## @table @var ## @item a ## @var{n} by @var{n} matrix ## @item b ## Matrix: @var{n} by @var{n}, @var{n} by @var{m}, or @var{p} by @var{n}. ## @end table ## ## @strong{Outputs} ## @var{x}: matrix satisfying appropriate discrete time Lyapunov equation. ## Options: ## @itemize @bullet ## @item @var{b} is square: solve @code{a x a' - x + b = 0} ## @item @var{b} is not square: @var{x} satisfies either ## @example ## a x a' - x + b b' = 0 ## @end example ## @noindent ## or ## @example ## a' x a - x + b' b = 0, ## @end example ## @noindent ## whichever is appropriate. ## @end itemize ## ## @strong{Method} ## Uses Schur decomposition method as in Kitagawa, ## @cite{An Algorithm for Solving the Matrix Equation @var{X} = ## @var{F}@var{X}@var{F}' + @var{S}}, ## International Journal of Control, Volume 25, Number 5, pages 745--753 ## (1977). ## ## Column-by-column solution method as suggested in ## Hammarling, @cite{Numerical Solution of the Stable, Non-Negative ## Definite Lyapunov Equation}, IMA Journal of Numerical Analysis, Volume ## 2, pages 303--323 (1982). ## ## @end deftypefn function x = dlyap (a, b) ## Written by A. S. Hodel (scotte@eng.auburn.edu) August 1993. if ((n = is_square (a)) == 0) warning ("dlyap: a must be square"); endif if ((m = is_square (b)) == 0) [n1, m] = size (b); if (n1 == n) b = b*b'; m = n1; else b = b'*b; a = a'; endif endif if (n != m) warning ("dlyap: a,b not conformably dimensioned"); endif ## Solve the equation column by column. [u, s] = schur (a); b = u'*b*u; j = n; while (j > 0) j1 = j; ## Check for Schur block. if (j == 1) blksiz = 1; elseif (s (j, j-1) != 0) blksiz = 2; j = j - 1; else blksiz = 1; endif Ajj = kron (s (j:j1, j:j1), s) - eye (blksiz*n); rhs = reshape (b (:, j:j1), blksiz*n, 1); if (j1 < n) rhs2 = s*(x (:, (j1+1):n) * s (j:j1, (j1+1):n)'); rhs = rhs + reshape (rhs2, blksiz*n, 1); endif v = - Ajj\rhs; x (:, j) = v (1:n); if(blksiz == 2) x (:, j1) = v ((n+1):blksiz*n); endif j = j - 1; endwhile ## Back-transform to original coordinates. x = u*x*u'; endfunction