Mercurial > hg > octave-nkf
view src/ov-cell.cc @ 6564:efa1716abd4c
[project @ 2007-04-23 19:32:01 by jwe]
author | jwe |
---|---|
date | Mon, 23 Apr 2007 19:33:36 +0000 |
parents | d26c558691cd |
children | 2aad75fcc93a |
line wrap: on
line source
/* Copyright (C) 1999 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iomanip> #include <iostream> #include <sstream> #include <vector> #include "Array-util.h" #include "byte-swap.h" #include "lo-utils.h" #include "quit.h" #include "defun.h" #include "error.h" #include "ov-cell.h" #include "oct-obj.h" #include "unwind-prot.h" #include "utils.h" #include "ov-base-mat.h" #include "ov-base-mat.cc" #include "ov-re-mat.h" #include "ov-scalar.h" #include "pr-output.h" #include "ov-scalar.h" #include "ls-oct-ascii.h" #include "ls-oct-binary.h" #include "ls-hdf5.h" #include "ls-utils.h" template class octave_base_matrix<Cell>; DEFINE_OCTAVE_ALLOCATOR (octave_cell); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_cell, "cell", "cell"); octave_value_list octave_cell::subsref (const std::string& type, const std::list<octave_value_list>& idx, int nargout) { octave_value_list retval; switch (type[0]) { case '(': retval(0) = do_index_op (idx.front ()); break; case '{': { octave_value tmp = do_index_op (idx.front ()); if (! error_state) { Cell tcell = tmp.cell_value (); if (tcell.length () == 1) retval(0) = tcell(0,0); else { octave_idx_type n = tcell.numel (); octave_value_list lst (n, octave_value ()); for (octave_idx_type i = 0; i < n; i++) { OCTAVE_QUIT; lst(i) = tcell(i); } retval(0) = octave_value (lst, true); } } } break; case '.': { std::string nm = type_name (); error ("%s cannot be indexed with %c", nm.c_str (), type[0]); } break; default: panic_impossible (); } // FIXME -- perhaps there should be an // octave_value_list::next_subsref member function? See also // octave_user_function::subsref. if (idx.size () > 1) retval = retval(0).next_subsref (nargout, type, idx); return retval; } octave_value octave_cell::subsasgn (const std::string& type, const std::list<octave_value_list>& idx, const octave_value& rhs) { octave_value retval; int n = type.length (); octave_value t_rhs = rhs; if (n > 1) { switch (type[0]) { case '(': { octave_value tmp = do_index_op (idx.front (), true); if (! tmp.is_defined ()) tmp = octave_value::empty_conv (type.substr (1), rhs); if (! error_state) { std::list<octave_value_list> next_idx (idx); next_idx.erase (next_idx.begin ()); tmp.make_unique (); t_rhs = tmp.subsasgn (type.substr (1), next_idx, rhs); } } break; case '{': { octave_value tmp = do_index_op (idx.front (), true); if (! tmp.is_defined ()) tmp = octave_value::empty_conv (type.substr (1), rhs); if (! error_state) { const Cell tcell = tmp.cell_value (); if (! error_state && tcell.length () == 1) { tmp = tcell(0,0); std::list<octave_value_list> next_idx (idx); next_idx.erase (next_idx.begin ()); tmp.make_unique (); if (! tmp.is_defined () || tmp.is_zero_by_zero ()) tmp = octave_value::empty_conv (type.substr (1), rhs); if (! error_state) t_rhs = tmp.subsasgn (type.substr (1), next_idx, rhs); } } } break; case '.': { std::string nm = type_name (); error ("%s cannot be indexed with %c", nm.c_str (), type[0]); } break; default: panic_impossible (); } } if (! error_state) { switch (type[0]) { case '(': { octave_value_list i = idx.front (); if (t_rhs.is_cell ()) octave_base_matrix<Cell>::assign (i, t_rhs.cell_value ()); else if (t_rhs.is_empty ()) octave_base_matrix<Cell>::assign (i, Cell()); else octave_base_matrix<Cell>::assign (i, Cell (t_rhs)); count++; retval = octave_value (this); } break; case '{': { octave_value_list i = idx.front (); if (t_rhs.is_cs_list ()) { Cell tmp_cell = Cell (t_rhs.list_value ()); // FIXME -- shouldn't care if the dimensions of the // RHS don't match the dimensions of the subscripted // LHS. octave_base_matrix<Cell>::assign (i, tmp_cell); } else octave_base_matrix<Cell>::assign (i, Cell (t_rhs)); count++; retval = octave_value (this); } break; case '.': { std::string nm = type_name (); error ("%s cannot be indexed with %c", nm.c_str (), type[0]); } break; default: panic_impossible (); } } return retval; } void octave_cell::assign (const octave_value_list& idx, const octave_value& rhs) { if (rhs.is_cell ()) octave_base_matrix<Cell>::assign (idx, rhs.cell_value ()); else octave_base_matrix<Cell>::assign (idx, Cell (rhs)); } size_t octave_cell::byte_size (void) const { size_t retval = 0; for (octave_idx_type i = 0; i < numel (); i++) retval += matrix(i).byte_size (); return retval; } octave_value_list octave_cell::list_value (void) const { octave_value_list retval; octave_idx_type nr = rows (); octave_idx_type nc = columns (); if (nr == 1 && nc > 0) { retval.resize (nc); for (octave_idx_type i = 0; i < nc; i++) retval(i) = matrix(0,i); } else if (nc == 1 && nr > 0) { retval.resize (nr); for (octave_idx_type i = 0; i < nr; i++) retval(i) = matrix(i,0); } else error ("invalid conversion from cell array to list"); return retval; } string_vector octave_cell::all_strings (bool pad) const { string_vector retval; octave_idx_type nr = rows (); octave_idx_type nc = columns (); int n_elts = 0; octave_idx_type max_len = 0; for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = 0; i < nr; i++) { string_vector s = matrix(i,j).all_strings (); if (error_state) return retval; n_elts += s.length (); octave_idx_type s_max_len = s.max_length (); if (s_max_len > max_len) max_len = s_max_len; } } retval.resize (n_elts); octave_idx_type k = 0; for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = 0; i < nr; i++) { string_vector s = matrix(i,j).all_strings (); int n = s.length (); for (octave_idx_type ii = 0; ii < n; ii++) { std::string t = s[ii]; int t_len = t.length (); if (pad && max_len > t_len) t += std::string (max_len - t_len, ' '); retval[k++] = t; } } } return retval; } bool octave_cell::print_as_scalar (void) const { return (ndims () > 2 || numel () == 0); } void octave_cell::print (std::ostream& os, bool) const { print_raw (os); } void octave_cell::print_raw (std::ostream& os, bool) const { int nd = matrix.ndims (); if (nd == 2) { octave_idx_type nr = rows (); octave_idx_type nc = columns (); if (nr > 0 && nc > 0) { indent (os); os << "{"; newline (os); increment_indent_level (); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; std::ostringstream buf; buf << "[" << i+1 << "," << j+1 << "]"; octave_value val = matrix(i,j); val.print_with_name (os, buf.str ()); } } decrement_indent_level (); indent (os); os << "}"; newline (os); } else { os << "{}"; if (Vprint_empty_dimensions) os << "(" << nr << "x" << nc << ")"; os << "\n"; } } else { indent (os); dim_vector dv = matrix.dims (); os << "{" << dv.str () << " Cell Array}"; newline (os); } } #define CELL_ELT_TAG "<cell-element>" bool octave_cell::save_ascii (std::ostream& os, bool& infnan_warned) { dim_vector d = dims (); if (d.length () > 2) { os << "# ndims: " << d.length () << "\n"; for (int i = 0; i < d.length (); i++) os << " " << d (i); os << "\n"; Cell tmp = cell_value (); for (octave_idx_type i = 0; i < d.numel (); i++) { octave_value o_val = tmp.elem (i); // Recurse to print sub-value. bool b = save_ascii_data (os, o_val, CELL_ELT_TAG, infnan_warned, false, 0); if (! b) return os; } } else { // Keep this case, rather than use generic code above for backward // compatiability. Makes load_ascii much more complex!! os << "# rows: " << rows () << "\n" << "# columns: " << columns () << "\n"; Cell tmp = cell_value (); for (octave_idx_type j = 0; j < tmp.cols (); j++) { for (octave_idx_type i = 0; i < tmp.rows (); i++) { octave_value o_val = tmp.elem (i, j); // Recurse to print sub-value. bool b = save_ascii_data (os, o_val, CELL_ELT_TAG, infnan_warned, false, 0); if (! b) return os; } os << "\n"; } } return true; } bool octave_cell::load_ascii (std::istream& is) { bool success = true; string_vector keywords(2); keywords[0] = "ndims"; keywords[1] = "rows"; std::string kw; octave_idx_type val = 0; if (extract_keyword (is, keywords, kw, val, true)) { if (kw == "ndims") { int mdims = static_cast<int> (val); if (mdims >= 0) { dim_vector dv; dv.resize (mdims); for (int i = 0; i < mdims; i++) is >> dv(i); Cell tmp(dv); for (octave_idx_type i = 0; i < dv.numel (); i++) { octave_value t2; bool dummy; // recurse to read cell elements std::string nm = read_ascii_data (is, std::string (), dummy, t2, i); if (nm == CELL_ELT_TAG) { if (is) tmp.elem (i) = t2; } else { error ("load: cell array element had unexpected name"); success = false; break; } } if (is) matrix = tmp; else { error ("load: failed to load matrix constant"); success = false; } } else { error ("load: failed to extract number of rows and columns"); success = false; } } else if (kw == "rows") { octave_idx_type nr = val; octave_idx_type nc = 0; if (nr >= 0 && extract_keyword (is, "columns", nc) && nc >= 0) { if (nr > 0 && nc > 0) { Cell tmp (nr, nc); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = 0; i < nr; i++) { octave_value t2; bool dummy; // recurse to read cell elements std::string nm = read_ascii_data (is, std::string (), dummy, t2, i); if (nm == CELL_ELT_TAG) { if (is) tmp.elem (i, j) = t2; } else { error ("load: cell array element had unexpected name"); success = false; goto cell_read_error; } } } cell_read_error: if (is) matrix = tmp; else { error ("load: failed to load cell element"); success = false; } } else if (nr == 0 || nc == 0) matrix = Cell (nr, nc); else panic_impossible (); } else { error ("load: failed to extract number of rows and columns for cell array"); success = false; } } else panic_impossible (); } else { error ("load: failed to extract number of rows and columns"); success = false; } return success; } bool octave_cell::save_binary (std::ostream& os, bool& save_as_floats) { dim_vector d = dims (); if (d.length () < 1) return false; // Use negative value for ndims int32_t di = - d.length(); os.write (reinterpret_cast<char *> (&di), 4); for (int i = 0; i < d.length (); i++) { di = d(i); os.write (reinterpret_cast<char *> (&di), 4); } Cell tmp = cell_value (); for (octave_idx_type i = 0; i < d.numel (); i++) { octave_value o_val = tmp.elem (i); // Recurse to print sub-value. bool b = save_binary_data (os, o_val, CELL_ELT_TAG, "", 0, save_as_floats); if (! b) return false; } return true; } bool octave_cell::load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt) { bool success = true; int32_t mdims; if (! is.read (reinterpret_cast<char *> (&mdims), 4)) return false; if (swap) swap_bytes<4> (&mdims); if (mdims >= 0) return false; mdims = -mdims; int32_t di; dim_vector dv; dv.resize (mdims); for (int i = 0; i < mdims; i++) { if (! is.read (reinterpret_cast<char *> (&di), 4)) return false; if (swap) swap_bytes<4> (&di); dv(i) = di; } // Convert an array with a single dimension to be a row vector. // Octave should never write files like this, other software // might. if (mdims == 1) { mdims = 2; dv.resize (mdims); dv(1) = dv(0); dv(0) = 1; } octave_idx_type nel = dv.numel (); Cell tmp(dv); for (octave_idx_type i = 0; i < nel; i++) { octave_value t2; bool dummy; std::string doc; // recurse to read cell elements std::string nm = read_binary_data (is, swap, fmt, std::string (), dummy, t2, doc); if (nm == CELL_ELT_TAG) { if (is) tmp.elem (i) = t2; } else { error ("load: cell array element had unexpected name"); success = false; break; } } if (is) matrix = tmp; else { error ("load: failed to load matrix constant"); success = false; } return success; } #if defined (HAVE_HDF5) bool octave_cell::save_hdf5 (hid_t loc_id, const char *name, bool save_as_floats) { dim_vector dv = dims (); int empty = save_hdf5_empty (loc_id, name, dv); if (empty) return (empty > 0); hsize_t rank = dv.length (); hid_t space_hid = -1, data_hid = -1, size_hid = -1; data_hid = H5Gcreate (loc_id, name, 0); if (data_hid < 0) return false; // Have to save cell array shape, since can't have a // dataset of groups.... space_hid = H5Screate_simple (1, &rank, 0); if (space_hid < 0) { H5Gclose (data_hid); return false; } OCTAVE_LOCAL_BUFFER (octave_idx_type, hdims, rank); // Octave uses column-major, while HDF5 uses row-major ordering for (hsize_t i = 0; i < rank; i++) hdims[i] = dv(rank-i-1); size_hid = H5Dcreate (data_hid, "dims", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (size_hid < 0) { H5Sclose (space_hid); H5Gclose (data_hid); return false; } if (H5Dwrite (size_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, hdims) < 0) { H5Dclose (size_hid); H5Sclose (space_hid); H5Gclose (data_hid); return false; } H5Dclose (size_hid); H5Sclose (space_hid); // Recursively add each element of the cell to this group. Cell tmp = cell_value (); octave_idx_type nel = dv.numel (); for (octave_idx_type i = 0; i < nel; i++) { std::ostringstream buf; int digits = static_cast<int> (floor (log10 (static_cast<double> (nel)) + 1.0)); buf << "_" << std::setw (digits) << std::setfill ('0') << i; std::string s = buf.str (); if (! add_hdf5_data (data_hid, tmp.elem (i), s.c_str (), "", false, save_as_floats)) { H5Gclose (data_hid); return false; } } H5Gclose (data_hid); return true; } bool octave_cell::load_hdf5 (hid_t loc_id, const char *name, bool have_h5giterate_bug) { bool retval = false; dim_vector dv; int empty = load_hdf5_empty (loc_id, name, dv); if (empty > 0) matrix.resize(dv); if (empty) return (empty > 0); hid_t group_id = H5Gopen (loc_id, name); if (group_id < 0) return false; hid_t data_hid = H5Dopen (group_id, "dims"); hid_t space_hid = H5Dget_space (data_hid); hsize_t rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 1) { H5Dclose (data_hid); H5Gclose (group_id); return false; } OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank); H5Sget_simple_extent_dims (space_hid, hdims, maxdims); // Octave uses column-major, while HDF5 uses row-major ordering. dv.resize (hdims[0]); OCTAVE_LOCAL_BUFFER (octave_idx_type, tmp, hdims[0]); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, tmp) < 0) { H5Dclose (data_hid); H5Gclose (group_id); return false; } H5Dclose (data_hid); H5Gclose (group_id); for (hsize_t i = 0, j = hdims[0] - 1; i < hdims[0]; i++, j--) dv(j) = tmp[i]; hdf5_callback_data dsub; herr_t retval2 = -1; Cell m (dv); int current_item = 0; if (have_h5giterate_bug) current_item = 1; // Skip dims items in group. #ifdef HAVE_H5GGET_NUM_OBJS hsize_t num_obj = 0; group_id = H5Gopen (loc_id, name); H5Gget_num_objs (group_id, &num_obj); H5Gclose (group_id); #endif for (octave_idx_type i = 0; i < dv.numel (); i++) { #ifdef HAVE_H5GGET_NUM_OBJS if (current_item >= static_cast<int> (num_obj)) retval2 = -1; else #endif retval2 = H5Giterate (loc_id, name, ¤t_item, hdf5_read_next_data, &dsub); if (retval2 <= 0) break; octave_value ov = dsub.tc; m.elem (i) = ov; if (have_h5giterate_bug) current_item++; // H5Giterate returned the last index processed. } if (retval2 >= 0) { matrix = m; retval = true; } return retval; } #endif DEFUN (iscell, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} iscell (@var{x})\n\ Return true if @var{x} is a cell array object. Otherwise, return\n\ false.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).is_cell (); else print_usage (); return retval; } DEFUN (cell, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} cell (@var{x})\n\ @deftypefnx {Built-in Function} {} cell (@var{n}, @var{m})\n\ Create a new cell array object. If invoked with a single scalar\n\ argument, @code{cell} returns a square cell array with the dimension\n\ specified. If you supply two scalar arguments, @code{cell} takes\n\ them to be the number of rows and columns. If given a vector with two\n\ elements, @code{cell} uses the values of the elements as the number of\n\ rows and columns, respectively.\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); dim_vector dims; switch (nargin) { case 0: dims = dim_vector (0, 0); break; case 1: get_dimensions (args(0), "cell", dims); break; default: { dims.resize (nargin); for (int i = 0; i < nargin; i++) { dims(i) = args(i).is_empty () ? 0 : args(i).nint_value (); if (error_state) { error ("cell: expecting scalar arguments"); break; } } } break; } if (! error_state) { int ndim = dims.length (); check_dimensions (dims, "cell"); if (! error_state) { switch (ndim) { case 1: retval = Cell (dims(0), dims(0), Matrix ()); break; default: retval = Cell (dims, Matrix ()); break; } } } return retval; } DEFUN (iscellstr, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} iscellstr (@var{cell})\n\ Return true if every element of the cell array @var{cell} is a\n\ character string\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).is_cellstr (); else print_usage (); return retval; } // Note that since Fcellstr calls Fiscellstr, we need to have // Fiscellstr defined first (to provide a declaration) and also we // should keep it in the same file (so we don't have to provide a // declaration) and so we don't have to use feval to call it. DEFUN (cellstr, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} cellstr (@var{string})\n\ Create a new cell array object from the elements of the string\n\ array @var{string}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) { octave_value_list tmp = Fiscellstr (args, 1); if (tmp(0).is_true ()) retval = args(0); else { string_vector s = args(0).all_strings (); if (! error_state) retval = Cell (s, true); else error ("cellstr: expecting argument to be a 2-d character array"); } } else print_usage (); return retval; } DEFUN (struct2cell, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} struct2cell (@var{S})\n\ Create a new cell array from the objects stored in the struct object.\n\ If @var{f} is the number of fields in the structure, the resulting\n\ cell array will have a dimension vector corresponding to\n\ @code{[@var{F} size(@var{S})]}.\n\ @seealso{cell2struct, fieldnames}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 1) { Octave_map m = args(0).map_value (); if (! error_state) { dim_vector m_dv = m.dims (); string_vector keys = m.keys (); octave_idx_type fields_numel = keys.length (); // The resulting dim_vector should have dimensions: // [numel(fields) size(struct)] dim_vector result_dv; result_dv.resize (m_dv.length () + 1); // Add 1 for the fields. result_dv(0) = fields_numel; for (int i = 1; i < result_dv.length (); i++) result_dv(i) = m_dv(i-1); // Squeeze to be sure that a (3,1) vector doesn't get turned // into a (3,3,1) vector. result_dv = result_dv.squeeze (); Cell c (result_dv); // Use ra_idx both for counting and for assignments, so // ra_idx(0) will both contain fields_numel for each call to // increment_index and j for each assignment. Array<octave_idx_type> ra_idx (result_dv.length (), 0); ra_idx(0) = fields_numel; for (octave_idx_type i = 0; i < m_dv.numel (); i++) { for (octave_idx_type j = 0; j < fields_numel; j++) { ra_idx(0) = j; Cell c_tmp = m.contents (keys(j)); if (c_tmp.length () > 1) // Is a cell. c(ra_idx) = c_tmp; else if (c_tmp.length () == 1) // Get octave_value. c(ra_idx) = c_tmp(0); else c(ra_idx) = Cell (); ra_idx(0) = fields_numel; } increment_index (ra_idx, result_dv); } retval = c; } else error ("struct2cell: expecting argument to be a cell array"); } else print_usage (); return retval; } mxArray * octave_cell::as_mxArray (void) const { mxArray *retval = new mxArray (dims ()); mxArray **elts = static_cast<mxArray **> (retval->get_data ()); int nel = numel (); const octave_value *p = matrix.data (); for (int i = 0; i < nel; i++) elts[i] = new mxArray (p[i]); return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */