Mercurial > hg > octave-nkf
view scripts/polynomial/roots.m @ 18283:efaff9f3ca39
* lex.ll: Make debug text match change in pattern.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 11 Jan 2014 17:20:38 -0500 |
parents | d63878346099 |
children | 4197fc428c7d |
line wrap: on
line source
## Copyright (C) 1994-2013 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} roots (@var{v}) ## ## For a vector @var{v} with @math{N} components, return ## the roots of the polynomial ## @tex ## $$ ## v_1 z^{N-1} + \cdots + v_{N-1} z + v_N. ## $$ ## @end tex ## @ifnottex ## ## @example ## v(1) * z^(N-1) + @dots{} + v(N-1) * z + v(N) ## @end example ## ## @end ifnottex ## ## As an example, the following code finds the roots of the quadratic ## polynomial ## @tex ## $$ p(x) = x^2 - 5. $$ ## @end tex ## @ifnottex ## ## @example ## p(x) = x^2 - 5. ## @end example ## ## @end ifnottex ## ## @example ## @group ## c = [1, 0, -5]; ## roots (c) ## @result{} 2.2361 ## @result{} -2.2361 ## @end group ## @end example ## ## Note that the true result is ## @tex ## $\pm \sqrt{5}$ ## @end tex ## @ifnottex ## @math{+/- sqrt(5)} ## @end ifnottex ## which is roughly ## @tex ## $\pm 2.2361$. ## @end tex ## @ifnottex ## @math{+/- 2.2361}. ## @end ifnottex ## @seealso{poly, compan, fzero} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 24 December 1993 ## Adapted-By: jwe function r = roots (v) if (nargin != 1 || (! isvector (v) && ! isempty (v))) print_usage (); elseif (any (! isfinite (v))) error ("roots: inputs must not contain Inf or NaN"); endif v = v(:); n = numel (v); ## If v = [ 0 ... 0 v(k+1) ... v(k+l) 0 ... 0 ], ## we can remove the leading k zeros, ## and n - k - l roots of the polynomial are zero. v_max = max (abs (v)); if (isempty (v) || v_max == 0) r = []; return; endif f = find (v ./ v_max); m = numel (f); v = v(f(1):f(m)); l = numel (v); if (l > 1) A = diag (ones (1, l-2), -1); A(1,:) = -v(2:l) ./ v(1); r = eig (A); if (f(m) < n) r = [r; zeros(n - f(m), 1)]; endif else r = zeros (n - f(m), 1); endif endfunction %!test %! p = [poly([3 3 3 3]), 0 0 0 0]; %! r = sort (roots (p)); %! assert (r, [0; 0; 0; 0; 3; 3; 3; 3], 0.001); %!assert (isempty (roots ([]))) %!assert (isempty (roots ([0 0]))) %!assert (isempty (roots (1))) %!assert (roots ([1, -6, 11, -6]), [3; 2; 1], sqrt (eps)) %!assert (roots ([1e-200, -1e200, 1]), 1e-200) %!assert (roots ([1e-200, -1e200 * 1i, 1]), -1e-200 * 1i) %!error roots () %!error roots (1,2) %!error roots ([1, 2; 3, 4]) %!error <inputs must not contain Inf or NaN> roots ([1 Inf 1]) %!error <inputs must not contain Inf or NaN> roots ([1 NaN 1])