view src/OPERATORS/op-dm-dm.cc @ 8964:f4f4d65faaa0

Implement sparse * diagonal and diagonal * sparse operations, double-prec only. Date: Sun, 8 Mar 2009 16:28:18 -0400 These preserve sparsity, so eye(5) * sprand (5, 5, .2) is *sparse* and not dense. This may affect people who use multiplication by eye() rather than full(). The liboctave routines do *not* check if arguments are scalars in disguise. There is a type problem with checking at that level. I suspect we want diag * "sparse scalar" to stay diagonal, but we have to return a sparse matrix at the liboctave. Rather than worrying about that in liboctave, we cope with it when binding to Octave and return the correct higher-level type. The implementation is in Sparse-diag-op-defs.h rather than Sparse-op-defs.h to limit recompilation. And the implementations are templates rather than macros to produce better compiler errors and debugging information.
author Jason Riedy <jason@acm.org>
date Mon, 09 Mar 2009 17:49:13 -0400
parents eb63fbe60fab
children fd0a3ac60b0e
line wrap: on
line source

/*

Copyright (C) 2008, 2009 Jaroslav Hajek

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "gripes.h"
#include "oct-obj.h"
#include "ov.h"
#include "ov-re-mat.h"
#include "ov-re-diag.h"
#include "ov-flt-re-diag.h"
#include "ov-typeinfo.h"
#include "ops.h"
#include "xdiv.h"
#include "xpow.h"

// matrix unary ops.

DEFUNOP_OP (uplus, diag_matrix, /* no-op */)
DEFUNOP_OP (uminus, diag_matrix, -)

DEFUNOP (transpose, diag_matrix)
{
  CAST_UNOP_ARG (const octave_diag_matrix&);
  return octave_value (v.diag_matrix_value().transpose ());
}

// matrix by matrix ops.

DEFBINOP_OP (add, diag_matrix, diag_matrix, +)
DEFBINOP_OP (sub, diag_matrix, diag_matrix, -)
DEFBINOP_OP (mul, diag_matrix, diag_matrix, *)

DEFBINOP (div, diag_matrix, diag_matrix)
{
  CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_diag_matrix&);
  
  return xdiv (v1.diag_matrix_value (), 
               v2.diag_matrix_value ());
}

DEFBINOP (ldiv, diag_matrix, diag_matrix)
{
  CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_diag_matrix&);
  
  return xleftdiv (v1.diag_matrix_value (),
                   v2.diag_matrix_value ());
}

CONVDECL (diag_matrix_to_matrix)
{
  CAST_CONV_ARG (const octave_diag_matrix&);

  return new octave_matrix (v.matrix_value ());
}

CONVDECL (diag_matrix_to_float_diag_matrix)
{
  CAST_CONV_ARG (const octave_diag_matrix&);

  return new octave_float_diag_matrix (v.float_diag_matrix_value ());
}

void
install_dm_dm_ops (void)
{
  INSTALL_UNOP (op_uplus, octave_diag_matrix, uplus);
  INSTALL_UNOP (op_uminus, octave_diag_matrix, uminus);
  INSTALL_UNOP (op_transpose, octave_diag_matrix, transpose);
  INSTALL_UNOP (op_hermitian, octave_diag_matrix, transpose);

  INSTALL_BINOP (op_add, octave_diag_matrix, octave_diag_matrix, add);
  INSTALL_BINOP (op_sub, octave_diag_matrix, octave_diag_matrix, sub);
  INSTALL_BINOP (op_mul, octave_diag_matrix, octave_diag_matrix, mul);
  INSTALL_BINOP (op_div, octave_diag_matrix, octave_diag_matrix, div);
  INSTALL_BINOP (op_ldiv, octave_diag_matrix, octave_diag_matrix, ldiv);

  INSTALL_CONVOP (octave_diag_matrix, octave_matrix, diag_matrix_to_matrix);
  INSTALL_CONVOP (octave_diag_matrix, octave_float_diag_matrix, diag_matrix_to_float_diag_matrix);
  INSTALL_ASSIGNCONV (octave_diag_matrix, octave_matrix, octave_matrix);
  INSTALL_WIDENOP (octave_diag_matrix, octave_matrix, diag_matrix_to_matrix);
}