Mercurial > hg > octave-nkf
view src/DLD-FUNCTIONS/qr.cc @ 7505:f5005d9510f4
Remove dispatched sparse functions and treat in the generic versions of the functions
author | David Bateman <dbateman@free.fr> |
---|---|
date | Wed, 20 Feb 2008 15:52:11 -0500 |
parents | 7879ef1042a8 |
children | 56be6f31dd4e |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1999, 2000, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "CmplxQR.h" #include "CmplxQRP.h" #include "dbleQR.h" #include "dbleQRP.h" #include "SparseQR.h" #include "SparseCmplxQR.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" // [Q, R] = qr (X): form Q unitary and R upper triangular such // that Q * R = X // // [Q, R] = qr (X, 0): form the economy decomposition such that if X is // m by n then only the first n columns of Q are // computed. // // [Q, R, P] = qr (X): form QRP factorization of X where // P is a permutation matrix such that // A * P = Q * R // // [Q, R, P] = qr (X, 0): form the economy decomposition with // permutation vector P such that Q * R = X (:, P) // // qr (X) alone returns the output of the LAPACK routine dgeqrf, such // that R = triu (qr (X)) DEFUN_DLD (qr, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{q}, @var{r}, @var{p}] =} qr (@var{a})\n\ @deftypefnx {Loadable Function} {[@var{q}, @var{r}, @var{p}] =} qr (@var{a}, '0')\n\ @cindex QR factorization\n\ Compute the QR factorization of @var{a}, using standard @sc{Lapack}\n\ subroutines. For example, given the matrix @code{a = [1, 2; 3, 4]},\n\ \n\ @example\n\ [q, r] = qr (a)\n\ @end example\n\ \n\ @noindent\n\ returns\n\ \n\ @example\n\ q =\n\ \n\ -0.31623 -0.94868\n\ -0.94868 0.31623\n\ \n\ r =\n\ \n\ -3.16228 -4.42719\n\ 0.00000 -0.63246\n\ @end example\n\ \n\ The @code{qr} factorization has applications in the solution of least\n\ squares problems\n\ @iftex\n\ @tex\n\ $$\n\ \\min_x \\left\\Vert A x - b \\right\\Vert_2\n\ $$\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @example\n\ @code{min norm(A x - b)}\n\ @end example\n\ \n\ @end ifinfo\n\ for overdetermined systems of equations (i.e.,\n\ @iftex\n\ @tex\n\ $A$\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ @code{a}\n\ @end ifinfo\n\ is a tall, thin matrix). The QR factorization is\n\ @iftex\n\ @tex\n\ $QR = A$ where $Q$ is an orthogonal matrix and $R$ is upper triangular.\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ @code{q * r = a} where @code{q} is an orthogonal matrix and @code{r} is\n\ upper triangular.\n\ @end ifinfo\n\ \n\ If given a second argument of '0', @code{qr} returns an economy-sized\n\ QR factorization, omitting zero rows of @var{R} and the corresponding\n\ columns of @var{Q}.\n\ \n\ If the matrix @var{a} is full, the permuted QR factorization\n\ @code{[@var{q}, @var{r}, @var{p}] = qr (@var{a})} forms the QR factorization\n\ such that the diagonal entries of @code{r} are decreasing in magnitude\n\ order. For example,given the matrix @code{a = [1, 2; 3, 4]},\n\ \n\ @example\n\ [q, r, p] = qr(a)\n\ @end example\n\ \n\ @noindent\n\ returns\n\ \n\ @example\n\ q = \n\ \n\ -0.44721 -0.89443\n\ -0.89443 0.44721\n\ \n\ r =\n\ \n\ -4.47214 -3.13050\n\ 0.00000 0.44721\n\ \n\ p =\n\ \n\ 0 1\n\ 1 0\n\ @end example\n\ \n\ The permuted @code{qr} factorization @code{[q, r, p] = qr (a)}\n\ factorization allows the construction of an orthogonal basis of\n\ @code{span (a)}.\n\ \n\ If the matrix @var{a} is sparse, then compute the sparse QR factorization\n\ of @var{a}, using @sc{CSparse}. As the matrix @var{Q} is in general a full\n\ matrix, this function returns the @var{Q}-less factorization @var{r} of\n\ @var{a}, such that @code{@var{r} = chol (@var{a}' * @var{a})}.\n\ \n\ If the final argument is the scalar @code{0} and the number of rows is\n\ larger than the number of columns, then an economy factorization is\n\ returned. That is @var{r} will have only @code{size (@var{a},1)} rows.\n\ \n\ If an additional matrix @var{b} is supplied, then @code{qr} returns\n\ @var{c}, where @code{@var{c} = @var{q}' * @var{b}}. This allows the\n\ least squares approximation of @code{@var{a} \\ @var{b}} to be calculated\n\ as\n\ \n\ @example\n\ [@var{c},@var{r}] = spqr (@var{a},@var{b})\n\ @var{x} = @var{r} \\ @var{c}\n\ @end example\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin < 1 || nargin > (args(0).is_sparse_type() ? 3 : 2) || nargout > 3) { print_usage (); return retval; } octave_value arg = args(0); int arg_is_empty = empty_arg ("qr", arg.rows (), arg.columns ()); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return octave_value_list (3, Matrix ()); if (arg.is_sparse_type ()) { bool economy = false; bool is_cmplx = false; int have_b = 0; if (arg.is_complex_type ()) is_cmplx = true; if (nargin > 1) { have_b = 1; if (args(nargin-1).is_scalar_type ()) { int val = args(nargin-1).int_value (); if (val == 0) { economy = true; have_b = (nargin > 2 ? 2 : 0); } } if (have_b > 0 && args(have_b).is_complex_type ()) is_cmplx = true; } if (!error_state) { if (have_b && nargout < 2) error ("qr: incorrect number of output arguments"); else if (is_cmplx) { SparseComplexQR q (arg.sparse_complex_matrix_value ()); if (!error_state) { if (have_b > 0) { retval(1) = q.R (economy); retval(0) = q.C (args(have_b).complex_matrix_value ()); if (arg.rows() < arg.columns()) warning ("qr: non minimum norm solution for under-determined problem"); } else if (nargout > 1) { retval(1) = q.R (economy); retval(0) = q.Q (); } else retval(0) = q.R (economy); } } else { SparseQR q (arg.sparse_matrix_value ()); if (!error_state) { if (have_b > 0) { retval(1) = q.R (economy); retval(0) = q.C (args(have_b).matrix_value ()); if (args(0).rows() < args(0).columns()) warning ("qr: non minimum norm solution for under-determined problem"); } else if (nargout > 1) { retval(1) = q.R (economy); retval(0) = q.Q (); } else retval(0) = q.R (economy); } } } } else { QR::type type = (nargout == 0 || nargout == 1) ? QR::raw : (nargin == 2 ? QR::economy : QR::std); if (arg.is_real_type ()) { Matrix m = arg.matrix_value (); if (! error_state) { switch (nargout) { case 0: case 1: { QR fact (m, type); retval(0) = fact.R (); } break; case 2: { QR fact (m, type); retval(1) = fact.R (); retval(0) = fact.Q (); } break; default: { QRP fact (m, type); retval(2) = fact.P (); retval(1) = fact.R (); retval(0) = fact.Q (); } break; } } } else if (arg.is_complex_type ()) { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { switch (nargout) { case 0: case 1: { ComplexQR fact (m, type); retval(0) = fact.R (); } break; case 2: { ComplexQR fact (m, type); retval(1) = fact.R (); retval(0) = fact.Q (); } break; default: { ComplexQRP fact (m, type); retval(2) = fact.P (); retval(1) = fact.R (); retval(0) = fact.Q (); } break; } } } else { gripe_wrong_type_arg ("qr", arg); } } return retval; } /* The deactivated tests below can't be tested till rectangular back-subs is implemented for sparse matrices. %!testif HAVE_CXSPARSE %! n = 20; d= 0.2; %! a = sprandn(n,n,d)+speye(n,n); %! r = qr(a); %! assert(r'*r,a'*a,1e-10) %!testif HAVE_CXSPARSE %! n = 20; d= 0.2; %! a = sprandn(n,n,d)+speye(n,n); %! q = symamd(a); %! a = a(q,q); %! r = qr(a); %! assert(r'*r,a'*a,1e-10) %!testif HAVE_CXSPARSE %! n = 20; d= 0.2; %! a = sprandn(n,n,d)+speye(n,n); %! [c,r] = qr(a,ones(n,1)); %! assert (r\c,full(a)\ones(n,1),10e-10) %!testif HAVE_CXSPARSE %! n = 20; d= 0.2; %! a = sprandn(n,n,d)+speye(n,n); %! b = randn(n,2); %! [c,r] = qr(a,b); %! assert (r\c,full(a)\b,10e-10) %% Test under-determined systems!! %!#testif HAVE_CXSPARSE %! n = 20; d= 0.2; %! a = sprandn(n,n+1,d)+speye(n,n+1); %! b = randn(n,2); %! [c,r] = qr(a,b); %! assert (r\c,full(a)\b,10e-10) %!testif HAVE_CXSPARSE %! n = 20; d= 0.2; %! a = 1i*sprandn(n,n,d)+speye(n,n); %! r = qr(a); %! assert(r'*r,a'*a,1e-10) %!testif HAVE_CXSPARSE %! n = 20; d= 0.2; %! a = 1i*sprandn(n,n,d)+speye(n,n); %! q = symamd(a); %! a = a(q,q); %! r = qr(a); %! assert(r'*r,a'*a,1e-10) %!testif HAVE_CXSPARSE %! n = 20; d= 0.2; %! a = 1i*sprandn(n,n,d)+speye(n,n); %! [c,r] = qr(a,ones(n,1)); %! assert (r\c,full(a)\ones(n,1),10e-10) %!testif HAVE_CXSPARSE %! n = 20; d= 0.2; %! a = 1i*sprandn(n,n,d)+speye(n,n); %! b = randn(n,2); %! [c,r] = qr(a,b); %! assert (r\c,full(a)\b,10e-10) %% Test under-determined systems!! %!#testif HAVE_CXSPARSE %! n = 20; d= 0.2; %! a = 1i*sprandn(n,n+1,d)+speye(n,n+1); %! b = randn(n,2); %! [c,r] = qr(a,b); %! assert (r\c,full(a)\b,10e-10) %!error qr(sprandn(10,10,0.2),ones(10,1)); */ /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */