Mercurial > hg > octave-nkf
view scripts/general/cumtrapz.m @ 9112:f5b51f54f44e
Remove obsolete comments from test scripts in test
author | Thorsten Meyer <thorsten.meyier@gmx.de> |
---|---|
date | Sun, 12 Apr 2009 22:30:00 +0200 |
parents | 1bf0ce0930be |
children | 95c3e38098bf |
line wrap: on
line source
## Copyright (C) 2000, 2006, 2007, 2009 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{z} =} cumtrapz (@var{y}) ## @deftypefnx {Function File} {@var{z} =} cumtrapz (@var{x}, @var{y}) ## @deftypefnx {Function File} {@var{z} =} cumtrapz (@dots{}, @var{dim}) ## ## Cumulative numerical integration using trapezoidal method. ## @code{cumtrapz (@var{y})} computes the cumulative integral of the ## @var{y} along the first non-singleton dimension. If the argument ## @var{x} is omitted a equally spaced vector is assumed. @code{cumtrapz ## (@var{x}, @var{y})} evaluates the cumulative integral with respect ## to @var{x}. ## ## @seealso{trapz,cumsum} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## ## also: June 2000 Paul Kienzle (fixes,suggestions) ## 2006-05-12 David Bateman - Modified for NDArrays function z = cumtrapz (x, y, dim) if (nargin < 1) || (nargin > 3) print_usage (); endif nd = ndims (x); sz = size (x); have_x = false; have_dim = false; if (nargin == 3) have_x = true; have_dim = true; endif if (nargin == 2) if (! size_equal (x, y) && isscalar (y)) dim = y; have_dim = true; else have_x = true; endif endif if (! have_dim) ## Find the first singleton dimension. dim = 0; while (dim < nd && sz(dim+1) == 1) dim++; endwhile dim++; if (dim > nd) dim = 1; endif else dim = floor (dim); if (dim < 1 || dim > nd) error ("cumtrapz: invalid dimension along which to sort"); endif endif n = sz(dim); idx1 = cell (); for i = 1:nd idx1{i} = 1:sz(i); endfor idx2 = idx1; idx1{dim} = 2 : n; idx2{dim} = 1 : (n - 1); if (! have_x) z = 0.5 * cumsum (x(idx1{:}) + x(idx2{:}), dim); else if (! size_equal (x, y)) error ("cumtrapz: x and y must have same shape"); endif z = 0.5 * cumsum ((x(idx1{:}) - x(idx2{:})) .* (y(idx1{:}) + y(idx2{:})), dim); endif sz(dim) = 1; z = cat (dim, zeros (sz), z); endfunction %!shared x1,x2,y %! x1 = [0,0,0;2,2,2]; %! x2 = [0,2,4;0,2,4]; %! y = [1,2,3;4,5,6]; %!assert (cumtrapz(y),[0,0,0;2.5,3.5,4.5]) %!assert (cumtrapz(x1,y),[0,0,0;5,7,9]) %!assert (cumtrapz(y,1),[0,0,0;2.5,3.5,4.5]) %!assert (cumtrapz(x1,y,1),[0,0,0;5,7,9]) %!assert (cumtrapz(y,2),[0,1.5,4;0,4.5,10]) %!assert (cumtrapz(x2,y,2),[0,3,8;0,9,20])