Mercurial > hg > octave-nkf
view src/log.cc @ 1684:f85887dfe06c
[project @ 1995-12-30 03:46:07 by jwe]
author | jwe |
---|---|
date | Sat, 30 Dec 1995 03:51:15 +0000 |
parents | 89c587478067 |
children | fe9d3b2ded26 |
line wrap: on
line source
// f-log.cc -*- C++ -*- /* Copyright (C) 1994, 1995 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "EIG.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "help.h" #include "tree-const.h" #include "user-prefs.h" #include "utils.h" // XXX FIXME XXX -- the next two functions should really be just // one... DEFUN_DLD_BUILTIN ("logm", Flogm, Slogm, FSlogm, 10, "logm (X): matrix logarithm") { Octave_object retval; int nargin = args.length (); if (nargin != 1) { print_usage ("logm"); return retval; } tree_constant arg = args(0); int arg_is_empty = empty_arg ("logm", arg.rows (), arg.columns ()); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return Matrix (); if (arg.is_real_scalar ()) { double d = arg.double_value (); if (d > 0.0) retval(0) = log (d); else { Complex dtmp (d); retval(0) = log (dtmp); } } else if (arg.is_complex_scalar ()) { Complex c = arg.complex_value (); retval(0) = log (c); } else if (arg.is_real_type ()) { Matrix m = arg.matrix_value (); if (! error_state) { int nr = m.rows (); int nc = m.columns (); if (nr == 0 || nc == 0 || nr != nc) gripe_square_matrix_required ("logm"); else { EIG m_eig (m); ComplexColumnVector lambda (m_eig.eigenvalues ()); ComplexMatrix Q (m_eig.eigenvectors ()); for (int i = 0; i < nr; i++) { Complex elt = lambda.elem (i); if (imag (elt) == 0.0 && real (elt) > 0.0) lambda.elem (i) = log (real (elt)); else lambda.elem (i) = log (elt); } ComplexDiagMatrix D (lambda); ComplexMatrix result = Q * D * Q.inverse (); retval(0) = result; } } } else if (arg.is_complex_type ()) { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { int nr = m.rows (); int nc = m.columns (); if (nr == 0 || nc == 0 || nr != nc) gripe_square_matrix_required ("logm"); else { EIG m_eig (m); ComplexColumnVector lambda (m_eig.eigenvalues ()); ComplexMatrix Q (m_eig.eigenvectors ()); for (int i = 0; i < nr; i++) { Complex elt = lambda.elem (i); if (imag (elt) == 0.0 && real (elt) > 0.0) lambda.elem (i) = log (real (elt)); else lambda.elem (i) = log (elt); } ComplexDiagMatrix D (lambda); ComplexMatrix result = Q * D * Q.inverse (); retval(0) = result; } } } else { gripe_wrong_type_arg ("logm", arg); } return retval; } DEFUN_DLD_BUILTIN ("sqrtm", Fsqrtm, Ssqrtm, FSsqrtm, 10, "sqrtm (X): matrix sqrt") { Octave_object retval; int nargin = args.length (); if (nargin != 1) { print_usage ("sqrtm"); return retval; } tree_constant arg = args(0); int arg_is_empty = empty_arg ("sqrtm", arg.rows (), arg.columns ()); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return Matrix (); if (arg.is_real_scalar ()) { double d = arg.double_value (); if (d > 0.0) retval(0) = sqrt (d); else { Complex dtmp (d); retval(0) = sqrt (dtmp); } } else if (arg.is_complex_scalar ()) { Complex c = arg.complex_value (); retval(0) = log (c); } else if (arg.is_real_type ()) { Matrix m = arg.matrix_value (); if (! error_state) { int nr = m.rows (); int nc = m.columns (); if (nr == 0 || nc == 0 || nr != nc) gripe_square_matrix_required ("sqrtm"); else { EIG m_eig (m); ComplexColumnVector lambda (m_eig.eigenvalues ()); ComplexMatrix Q (m_eig.eigenvectors ()); for (int i = 0; i < nr; i++) { Complex elt = lambda.elem (i); if (imag (elt) == 0.0 && real (elt) > 0.0) lambda.elem (i) = sqrt (real (elt)); else lambda.elem (i) = sqrt (elt); } ComplexDiagMatrix D (lambda); ComplexMatrix result = Q * D * Q.inverse (); retval(0) = result; } } } else if (arg.is_complex_type ()) { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { int nr = m.rows (); int nc = m.columns (); if (nr == 0 || nc == 0 || nr != nc) gripe_square_matrix_required ("sqrtm"); else { EIG m_eig (m); ComplexColumnVector lambda (m_eig.eigenvalues ()); ComplexMatrix Q (m_eig.eigenvectors ()); for (int i = 0; i < nr; i++) { Complex elt = lambda.elem (i); if (imag (elt) == 0.0 && real (elt) > 0.0) lambda.elem (i) = sqrt (real (elt)); else lambda.elem (i) = sqrt (elt); } ComplexDiagMatrix D (lambda); ComplexMatrix result = Q * D * Q.inverse (); retval(0) = result; } } } else { gripe_wrong_type_arg ("sqrtm", arg); } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */