Mercurial > hg > octave-nkf
view scripts/statistics/base/meansq.m @ 14182:f8d99761244c stable
test: Expand %!testif functionality to multiple conditions
* test.m: Add testing for multiple conditions in %!testif statement.
* svds.m, eigs.cc: Test for ARPACK and other libraries before running
some tests.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Mon, 09 Jan 2012 13:32:44 -0800 |
parents | 72c96de7a403 |
children | f3d52523cde1 |
line wrap: on
line source
## Copyright (C) 1995-2012 Kurt Hornik ## Copyright (C) 2009 Jaroslav Hajek ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} meansq (@var{x}) ## @deftypefnx {Function File} {} meansq (@var{x}, @var{dim}) ## Compute the mean square of the elements of the vector @var{x}. ## @tex ## $$ ## {\rm meansq} (x) = {\sum_{i=1}^N {x_i}^2 \over N} ## $$ ## where $\bar{x}$ is the mean value of $x$. ## @end tex ## @ifnottex ## ## @example ## @group ## std (x) = 1/N SUM_i x(i)^2 ## @end group ## @end example ## ## @end ifnottex ## For matrix arguments, return a row vector containing the mean square ## of each column. ## ## If the optional argument @var{dim} is given, operate along this dimension. ## @seealso{var, std, moment} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Compute mean square function y = meansq (x, dim) if (nargin != 1 && nargin != 2) print_usage (); endif if (! (isnumeric (x) || islogical (x))) error ("mean: X must be a numeric vector or matrix"); endif nd = ndims (x); sz = size (x); if (nargin < 2) ## Find the first non-singleton dimension. (dim = find (sz > 1, 1)) || (dim = 1); else if (!(isscalar (dim) && dim == fix (dim)) || !(1 <= dim && dim <= nd)) error ("mean: DIM must be an integer and a valid dimension"); endif endif y = sumsq (x, dim) / sz(dim); endfunction %!assert(meansq (1:5), 11); %!assert(meansq (single(1:5)), single(11)); %!assert(meansq (magic (4)), [94.5, 92.5, 92.5, 94.5]); %!assert(meansq (magic (4), 2), [109.5; 77.5; 77.5; 109.5]); %% Test input validation %!error meansq () %!error meansq (1, 2, 3) %!error meansq (['A'; 'B']); %!error meansq (1, ones(2,2)) %!error meansq (1, 1.5) %!error meansq (1, 0) %!error meansq (1, 3)