Mercurial > hg > octave-nkf
view scripts/signal/diffpara.m @ 3426:f8dde1807dee
[project @ 2000-01-13 08:40:00 by jwe]
author | jwe |
---|---|
date | Thu, 13 Jan 2000 08:40:53 +0000 |
parents | 041ea33fbbf4 |
children | 858695b3ed62 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997 Friedrich Leisch ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ## usage: [d, D] = diffpara (X [, a [, b]]) ## ## Returns the estimator d for the differencing parameter of an ## integrated time series. ## ## The frequencies from [2*pi*a/T, 2*pi*b/T] are used for the ## estimation. If b is omitted, the interval [2*pi/T, 2*pi*a/T] is used, ## if both b and a are omitted then a = 0.5 * sqrt(T) and b = 1.5 * ## sqrt(T) is used, where T is the sample size. If X is a matrix, the ## differencing parameter of every single column is estimated. ## ## D contains the estimators for all frequencies in the intervals ## described above, d is simply mean(D). ## ## Reference: Brockwell, Peter J. & Davis, Richard A. Time Series: ## Theory and Methods Springer 1987 ## Author: FL <Friedrich.Leisch@ci.tuwien.ac.at> ## Description: Estimate the fractional differencing parameter function [d, D] = diffpara (X, a, b) if ((nargin < 1) || (nargin > 3)) usage ("[d [, D]] = diffpara (X [, a [, b]])"); else if is_vector (X) n = length (X); k = 1; X = reshape (X, n, 1); else [n, k] = size(X); endif if (nargin == 1) a = 0.5 * sqrt (n); b = 1.5 * sqrt (n); elseif (nargin == 2) b = a; a = 1; endif endif if !(is_scalar (a) && is_scalar (b)) error ("diffpara: a and b must be scalars"); endif D = zeros (b - a + 1, k); for l = 1:k w = 2 * pi * (1 : n-1) / n; x = 2 * log (abs( 1 - exp (-i*w))); y = log (periodogram (X(2:n,l))); x = center (x); y = center (y); for m = a:b D(m-a+1) = - x(1:m) * y(1:m) / sumsq (x(1:m)); endfor endfor d = mean (D); endfunction