Mercurial > hg > octave-nkf
view liboctave/CSparse.cc @ 14626:f947d2922feb stable rc-3-6-2-0
3.6.2-rc0 release candidate
* configure.ac (AC_INIT): Version is now 3.6.2-rc0.
(OCTAVE_RELEASE_DATE): Now 2012-05-11.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 11 May 2012 13:46:18 -0400 |
parents | 72c96de7a403 |
children | 5bc9b9cb4362 |
line wrap: on
line source
/* Copyright (C) 2004-2012 David Bateman Copyright (C) 1998-2004 Andy Adler Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include <iostream> #include <vector> #include "quit.h" #include "lo-ieee.h" #include "lo-mappers.h" #include "f77-fcn.h" #include "dRowVector.h" #include "oct-locbuf.h" #include "dDiagMatrix.h" #include "CDiagMatrix.h" #include "CSparse.h" #include "boolSparse.h" #include "dSparse.h" #include "functor.h" #include "oct-spparms.h" #include "SparseCmplxLU.h" #include "oct-sparse.h" #include "sparse-util.h" #include "SparseCmplxCHOL.h" #include "SparseCmplxQR.h" #include "Sparse-diag-op-defs.h" #include "Sparse-perm-op-defs.h" #include "mx-inlines.cc" // Define whether to use a basic QR solver or one that uses a Dulmange // Mendelsohn factorization to seperate the problem into under-determined, // well-determined and over-determined parts and solves them seperately #ifndef USE_QRSOLVE #include "sparse-dmsolve.cc" #endif // Fortran functions we call. extern "C" { F77_RET_T F77_FUNC (zgbtrf, ZGBTRF) (const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, Complex*, const octave_idx_type&, octave_idx_type*, octave_idx_type&); F77_RET_T F77_FUNC (zgbtrs, ZGBTRS) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, const Complex*, const octave_idx_type&, const octave_idx_type*, Complex*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zgbcon, ZGBCON) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, Complex*, const octave_idx_type&, const octave_idx_type*, const double&, double&, Complex*, double*, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zpbtrf, ZPBTRF) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, Complex*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zpbtrs, ZPBTRS) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, Complex*, const octave_idx_type&, Complex*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zpbcon, ZPBCON) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, Complex*, const octave_idx_type&, const double&, double&, Complex*, double*, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zgttrf, ZGTTRF) (const octave_idx_type&, Complex*, Complex*, Complex*, Complex*, octave_idx_type*, octave_idx_type&); F77_RET_T F77_FUNC (zgttrs, ZGTTRS) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const Complex*, const Complex*, const Complex*, const Complex*, const octave_idx_type*, Complex *, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zptsv, ZPTSV) (const octave_idx_type&, const octave_idx_type&, double*, Complex*, Complex*, const octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (zgtsv, ZGTSV) (const octave_idx_type&, const octave_idx_type&, Complex*, Complex*, Complex*, Complex*, const octave_idx_type&, octave_idx_type&); } SparseComplexMatrix::SparseComplexMatrix (const SparseMatrix& a) : MSparse<Complex> (a) { } SparseComplexMatrix::SparseComplexMatrix (const SparseBoolMatrix& a) : MSparse<Complex> (a.rows (), a.cols (), a.nnz ()) { octave_idx_type nc = cols (); octave_idx_type nz = a.nnz (); for (octave_idx_type i = 0; i < nc + 1; i++) cidx (i) = a.cidx (i); for (octave_idx_type i = 0; i < nz; i++) { data (i) = Complex (a.data (i)); ridx (i) = a.ridx (i); } } SparseComplexMatrix::SparseComplexMatrix (const ComplexDiagMatrix& a) : MSparse<Complex> (a.rows (), a.cols (), a.length ()) { octave_idx_type j = 0, l = a.length (); for (octave_idx_type i = 0; i < l; i++) { cidx (i) = j; if (a(i, i) != 0.0) { data (j) = a(i, i); ridx (j) = i; j++; } } for (octave_idx_type i = l; i <= a.cols (); i++) cidx(i) = j; } bool SparseComplexMatrix::operator == (const SparseComplexMatrix& a) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nz = nnz (); octave_idx_type nr_a = a.rows (); octave_idx_type nc_a = a.cols (); octave_idx_type nz_a = a.nnz (); if (nr != nr_a || nc != nc_a || nz != nz_a) return false; for (octave_idx_type i = 0; i < nc + 1; i++) if (cidx(i) != a.cidx(i)) return false; for (octave_idx_type i = 0; i < nz; i++) if (data(i) != a.data(i) || ridx(i) != a.ridx(i)) return false; return true; } bool SparseComplexMatrix::operator != (const SparseComplexMatrix& a) const { return !(*this == a); } bool SparseComplexMatrix::is_hermitian (void) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr == nc && nr > 0) { for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { octave_idx_type ri = ridx(i); if (ri != j) { bool found = false; for (octave_idx_type k = cidx(ri); k < cidx(ri+1); k++) { if (ridx(k) == j) { if (data(i) == conj(data(k))) found = true; break; } } if (! found) return false; } } } return true; } return false; } static const Complex Complex_NaN_result (octave_NaN, octave_NaN); SparseComplexMatrix SparseComplexMatrix::max (int dim) const { Array<octave_idx_type> dummy_idx; return max (dummy_idx, dim); } SparseComplexMatrix SparseComplexMatrix::max (Array<octave_idx_type>& idx_arg, int dim) const { SparseComplexMatrix result; dim_vector dv = dims (); if (dv.numel () == 0 || dim >= dv.length ()) return result; if (dim < 0) dim = dv.first_non_singleton (); octave_idx_type nr = dv(0); octave_idx_type nc = dv(1); if (dim == 0) { idx_arg.clear (1, nc); octave_idx_type nel = 0; for (octave_idx_type j = 0; j < nc; j++) { Complex tmp_max; double abs_max = octave_NaN; octave_idx_type idx_j = 0; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { if (ridx(i) != idx_j) break; else idx_j++; } if (idx_j != nr) { tmp_max = 0.; abs_max = 0.; } for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { Complex tmp = data (i); if (xisnan (tmp)) continue; double abs_tmp = std::abs (tmp); if (xisnan (abs_max) || abs_tmp > abs_max) { idx_j = ridx (i); tmp_max = tmp; abs_max = abs_tmp; } } idx_arg.elem (j) = xisnan (tmp_max) ? 0 : idx_j; if (abs_max != 0.) nel++; } result = SparseComplexMatrix (1, nc, nel); octave_idx_type ii = 0; result.xcidx (0) = 0; for (octave_idx_type j = 0; j < nc; j++) { Complex tmp = elem (idx_arg(j), j); if (tmp != 0.) { result.xdata (ii) = tmp; result.xridx (ii++) = 0; } result.xcidx (j+1) = ii; } } else { idx_arg.resize (dim_vector (nr, 1), 0); for (octave_idx_type i = cidx(0); i < cidx(1); i++) idx_arg.elem(ridx(i)) = -1; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { if (idx_arg.elem(i) != -1) continue; bool found = false; for (octave_idx_type k = cidx(j); k < cidx(j+1); k++) if (ridx(k) == i) { found = true; break; } if (!found) idx_arg.elem(i) = j; } for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { octave_idx_type ir = ridx (i); octave_idx_type ix = idx_arg.elem (ir); Complex tmp = data (i); if (xisnan (tmp)) continue; else if (ix == -1 || std::abs(tmp) > std::abs(elem (ir, ix))) idx_arg.elem (ir) = j; } } octave_idx_type nel = 0; for (octave_idx_type j = 0; j < nr; j++) if (idx_arg.elem(j) == -1 || elem (j, idx_arg.elem (j)) != 0.) nel++; result = SparseComplexMatrix (nr, 1, nel); octave_idx_type ii = 0; result.xcidx (0) = 0; result.xcidx (1) = nel; for (octave_idx_type j = 0; j < nr; j++) { if (idx_arg(j) == -1) { idx_arg(j) = 0; result.xdata (ii) = Complex_NaN_result; result.xridx (ii++) = j; } else { Complex tmp = elem (j, idx_arg(j)); if (tmp != 0.) { result.xdata (ii) = tmp; result.xridx (ii++) = j; } } } } return result; } SparseComplexMatrix SparseComplexMatrix::min (int dim) const { Array<octave_idx_type> dummy_idx; return min (dummy_idx, dim); } SparseComplexMatrix SparseComplexMatrix::min (Array<octave_idx_type>& idx_arg, int dim) const { SparseComplexMatrix result; dim_vector dv = dims (); if (dv.numel () == 0 || dim >= dv.length ()) return result; if (dim < 0) dim = dv.first_non_singleton (); octave_idx_type nr = dv(0); octave_idx_type nc = dv(1); if (dim == 0) { idx_arg.clear (1, nc); octave_idx_type nel = 0; for (octave_idx_type j = 0; j < nc; j++) { Complex tmp_min; double abs_min = octave_NaN; octave_idx_type idx_j = 0; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { if (ridx(i) != idx_j) break; else idx_j++; } if (idx_j != nr) { tmp_min = 0.; abs_min = 0.; } for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { Complex tmp = data (i); if (xisnan (tmp)) continue; double abs_tmp = std::abs (tmp); if (xisnan (abs_min) || abs_tmp < abs_min) { idx_j = ridx (i); tmp_min = tmp; abs_min = abs_tmp; } } idx_arg.elem (j) = xisnan (tmp_min) ? 0 : idx_j; if (abs_min != 0.) nel++; } result = SparseComplexMatrix (1, nc, nel); octave_idx_type ii = 0; result.xcidx (0) = 0; for (octave_idx_type j = 0; j < nc; j++) { Complex tmp = elem (idx_arg(j), j); if (tmp != 0.) { result.xdata (ii) = tmp; result.xridx (ii++) = 0; } result.xcidx (j+1) = ii; } } else { idx_arg.resize (dim_vector (nr, 1), 0); for (octave_idx_type i = cidx(0); i < cidx(1); i++) idx_arg.elem(ridx(i)) = -1; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { if (idx_arg.elem(i) != -1) continue; bool found = false; for (octave_idx_type k = cidx(j); k < cidx(j+1); k++) if (ridx(k) == i) { found = true; break; } if (!found) idx_arg.elem(i) = j; } for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { octave_idx_type ir = ridx (i); octave_idx_type ix = idx_arg.elem (ir); Complex tmp = data (i); if (xisnan (tmp)) continue; else if (ix == -1 || std::abs(tmp) < std::abs(elem (ir, ix))) idx_arg.elem (ir) = j; } } octave_idx_type nel = 0; for (octave_idx_type j = 0; j < nr; j++) if (idx_arg.elem(j) == -1 || elem (j, idx_arg.elem (j)) != 0.) nel++; result = SparseComplexMatrix (nr, 1, nel); octave_idx_type ii = 0; result.xcidx (0) = 0; result.xcidx (1) = nel; for (octave_idx_type j = 0; j < nr; j++) { if (idx_arg(j) == -1) { idx_arg(j) = 0; result.xdata (ii) = Complex_NaN_result; result.xridx (ii++) = j; } else { Complex tmp = elem (j, idx_arg(j)); if (tmp != 0.) { result.xdata (ii) = tmp; result.xridx (ii++) = j; } } } } return result; } ComplexRowVector SparseComplexMatrix::row (octave_idx_type i) const { octave_idx_type nc = columns (); ComplexRowVector retval (nc, 0); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type k = cidx (j); k < cidx (j+1); k++) { if (ridx (k) == i) { retval(j) = data (k); break; } } return retval; } ComplexColumnVector SparseComplexMatrix::column (octave_idx_type i) const { octave_idx_type nr = rows (); ComplexColumnVector retval (nr, 0); for (octave_idx_type k = cidx (i); k < cidx (i+1); k++) retval(ridx (k)) = data (k); return retval; } // destructive insert/delete/reorder operations SparseComplexMatrix& SparseComplexMatrix::insert (const SparseMatrix& a, octave_idx_type r, octave_idx_type c) { SparseComplexMatrix tmp (a); return insert (tmp /*a*/, r, c); } SparseComplexMatrix& SparseComplexMatrix::insert (const SparseComplexMatrix& a, octave_idx_type r, octave_idx_type c) { MSparse<Complex>::insert (a, r, c); return *this; } SparseComplexMatrix& SparseComplexMatrix::insert (const SparseMatrix& a, const Array<octave_idx_type>& indx) { SparseComplexMatrix tmp (a); return insert (tmp /*a*/, indx); } SparseComplexMatrix& SparseComplexMatrix::insert (const SparseComplexMatrix& a, const Array<octave_idx_type>& indx) { MSparse<Complex>::insert (a, indx); return *this; } SparseComplexMatrix SparseComplexMatrix::concat (const SparseComplexMatrix& rb, const Array<octave_idx_type>& ra_idx) { // Don't use numel to avoid all possiblity of an overflow if (rb.rows () > 0 && rb.cols () > 0) insert (rb, ra_idx(0), ra_idx(1)); return *this; } SparseComplexMatrix SparseComplexMatrix::concat (const SparseMatrix& rb, const Array<octave_idx_type>& ra_idx) { SparseComplexMatrix tmp (rb); if (rb.rows () > 0 && rb.cols () > 0) insert (tmp, ra_idx(0), ra_idx(1)); return *this; } ComplexMatrix SparseComplexMatrix::matrix_value (void) const { return Sparse<Complex>::array_value (); } SparseComplexMatrix SparseComplexMatrix::hermitian (void) const { octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nz = nnz (); SparseComplexMatrix retval (nc, nr, nz); for (octave_idx_type i = 0; i < nz; i++) retval.xcidx (ridx (i) + 1)++; // retval.xcidx[1:nr] holds the row degrees for rows 0:(nr-1) nz = 0; for (octave_idx_type i = 1; i <= nr; i++) { const octave_idx_type tmp = retval.xcidx (i); retval.xcidx (i) = nz; nz += tmp; } // retval.xcidx[1:nr] holds row entry *start* offsets for rows 0:(nr-1) for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type k = cidx(j); k < cidx(j+1); k++) { octave_idx_type q = retval.xcidx (ridx (k) + 1)++; retval.xridx (q) = j; retval.xdata (q) = conj (data (k)); } assert (nnz () == retval.xcidx (nr)); // retval.xcidx[1:nr] holds row entry *end* offsets for rows 0:(nr-1) // and retval.xcidx[0:(nr-1)] holds their row entry *start* offsets return retval; } SparseComplexMatrix conj (const SparseComplexMatrix& a) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); octave_idx_type nz = a.nnz (); SparseComplexMatrix retval (nc, nr, nz); for (octave_idx_type i = 0; i < nc + 1; i++) retval.cidx (i) = a.cidx (i); for (octave_idx_type i = 0; i < nz; i++) { retval.data (i) = conj (a.data (i)); retval.ridx (i) = a.ridx (i); } return retval; } SparseComplexMatrix SparseComplexMatrix::inverse (void) const { octave_idx_type info; double rcond; MatrixType mattype (*this); return inverse (mattype, info, rcond, 0, 0); } SparseComplexMatrix SparseComplexMatrix::inverse (MatrixType& mattype) const { octave_idx_type info; double rcond; return inverse (mattype, info, rcond, 0, 0); } SparseComplexMatrix SparseComplexMatrix::inverse (MatrixType& mattype, octave_idx_type& info) const { double rcond; return inverse (mattype, info, rcond, 0, 0); } SparseComplexMatrix SparseComplexMatrix::dinverse (MatrixType &mattyp, octave_idx_type& info, double& rcond, const bool, const bool calccond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); info = 0; if (nr == 0 || nc == 0 || nr != nc) (*current_liboctave_error_handler) ("inverse requires square matrix"); else { // Print spparms("spumoni") info if requested int typ = mattyp.type (); mattyp.info (); if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal) { if (typ == MatrixType::Permuted_Diagonal) retval = transpose(); else retval = *this; // Force make_unique to be called Complex *v = retval.data(); if (calccond) { double dmax = 0., dmin = octave_Inf; for (octave_idx_type i = 0; i < nr; i++) { double tmp = std::abs(v[i]); if (tmp > dmax) dmax = tmp; if (tmp < dmin) dmin = tmp; } rcond = dmin / dmax; } for (octave_idx_type i = 0; i < nr; i++) v[i] = 1.0 / v[i]; } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::tinverse (MatrixType &mattyp, octave_idx_type& info, double& rcond, const bool, const bool calccond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); info = 0; if (nr == 0 || nc == 0 || nr != nc) (*current_liboctave_error_handler) ("inverse requires square matrix"); else { // Print spparms("spumoni") info if requested int typ = mattyp.type (); mattyp.info (); if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper || typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower) { double anorm = 0.; double ainvnorm = 0.; if (calccond) { // Calculate the 1-norm of matrix for rcond calculation for (octave_idx_type j = 0; j < nr; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } if (typ == MatrixType::Upper || typ == MatrixType::Lower) { octave_idx_type nz = nnz (); octave_idx_type cx = 0; octave_idx_type nz2 = nz; retval = SparseComplexMatrix (nr, nc, nz2); for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); // place the 1 in the identity position octave_idx_type cx_colstart = cx; if (cx == nz2) { nz2 *= 2; retval.change_capacity (nz2); } retval.xcidx(i) = cx; retval.xridx(cx) = i; retval.xdata(cx) = 1.0; cx++; // iterate accross columns of input matrix for (octave_idx_type j = i+1; j < nr; j++) { Complex v = 0.; // iterate to calculate sum octave_idx_type colXp = retval.xcidx(i); octave_idx_type colUp = cidx(j); octave_idx_type rpX, rpU; if (cidx(j) == cidx(j+1)) { (*current_liboctave_error_handler) ("division by zero"); goto inverse_singular; } do { octave_quit (); rpX = retval.xridx(colXp); rpU = ridx(colUp); if (rpX < rpU) colXp++; else if (rpX > rpU) colUp++; else { v -= retval.xdata(colXp) * data(colUp); colXp++; colUp++; } } while ((rpX<j) && (rpU<j) && (colXp<cx) && (colUp<nz)); // get A(m,m) if (typ == MatrixType::Upper) colUp = cidx(j+1) - 1; else colUp = cidx(j); Complex pivot = data(colUp); if (pivot == 0. || ridx(colUp) != j) { (*current_liboctave_error_handler) ("division by zero"); goto inverse_singular; } if (v != 0.) { if (cx == nz2) { nz2 *= 2; retval.change_capacity (nz2); } retval.xridx(cx) = j; retval.xdata(cx) = v / pivot; cx++; } } // get A(m,m) octave_idx_type colUp; if (typ == MatrixType::Upper) colUp = cidx(i+1) - 1; else colUp = cidx(i); Complex pivot = data(colUp); if (pivot == 0. || ridx(colUp) != i) { (*current_liboctave_error_handler) ("division by zero"); goto inverse_singular; } if (pivot != 1.0) for (octave_idx_type j = cx_colstart; j < cx; j++) retval.xdata(j) /= pivot; } retval.xcidx(nr) = cx; retval.maybe_compress (); } else { octave_idx_type nz = nnz (); octave_idx_type cx = 0; octave_idx_type nz2 = nz; retval = SparseComplexMatrix (nr, nc, nz2); OCTAVE_LOCAL_BUFFER (Complex, work, nr); OCTAVE_LOCAL_BUFFER (octave_idx_type, rperm, nr); octave_idx_type *perm = mattyp.triangular_perm(); if (typ == MatrixType::Permuted_Upper) { for (octave_idx_type i = 0; i < nr; i++) rperm[perm[i]] = i; } else { for (octave_idx_type i = 0; i < nr; i++) rperm[i] = perm[i]; for (octave_idx_type i = 0; i < nr; i++) perm[rperm[i]] = i; } for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); octave_idx_type iidx = rperm[i]; for (octave_idx_type j = 0; j < nr; j++) work[j] = 0.; // place the 1 in the identity position work[iidx] = 1.0; // iterate accross columns of input matrix for (octave_idx_type j = iidx+1; j < nr; j++) { Complex v = 0.; octave_idx_type jidx = perm[j]; // iterate to calculate sum for (octave_idx_type k = cidx(jidx); k < cidx(jidx+1); k++) { octave_quit (); v -= work[ridx(k)] * data(k); } // get A(m,m) Complex pivot; if (typ == MatrixType::Permuted_Upper) pivot = data(cidx(jidx+1) - 1); else pivot = data(cidx(jidx)); if (pivot == 0.) { (*current_liboctave_error_handler) ("division by zero"); goto inverse_singular; } work[j] = v / pivot; } // get A(m,m) octave_idx_type colUp; if (typ == MatrixType::Permuted_Upper) colUp = cidx(perm[iidx]+1) - 1; else colUp = cidx(perm[iidx]); Complex pivot = data(colUp); if (pivot == 0.) { (*current_liboctave_error_handler) ("division by zero"); goto inverse_singular; } octave_idx_type new_cx = cx; for (octave_idx_type j = iidx; j < nr; j++) if (work[j] != 0.0) { new_cx++; if (pivot != 1.0) work[j] /= pivot; } if (cx < new_cx) { nz2 = (2*nz2 < new_cx ? new_cx : 2*nz2); retval.change_capacity (nz2); } retval.xcidx(i) = cx; for (octave_idx_type j = iidx; j < nr; j++) if (work[j] != 0.) { retval.xridx(cx) = j; retval.xdata(cx++) = work[j]; } } retval.xcidx(nr) = cx; retval.maybe_compress (); } if (calccond) { // Calculate the 1-norm of inverse matrix for rcond calculation for (octave_idx_type j = 0; j < nr; j++) { double atmp = 0.; for (octave_idx_type i = retval.cidx(j); i < retval.cidx(j+1); i++) atmp += std::abs(retval.data(i)); if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; inverse_singular: return SparseComplexMatrix(); } SparseComplexMatrix SparseComplexMatrix::inverse (MatrixType& mattype, octave_idx_type& info, double& rcond, int, int calc_cond) const { int typ = mattype.type (false); SparseComplexMatrix ret; if (typ == MatrixType::Unknown) typ = mattype.type (*this); if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal) ret = dinverse (mattype, info, rcond, true, calc_cond); else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper) ret = tinverse (mattype, info, rcond, true, calc_cond).transpose(); else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower) { MatrixType newtype = mattype.transpose(); ret = transpose().tinverse (newtype, info, rcond, true, calc_cond); } else { if (mattype.is_hermitian()) { MatrixType tmp_typ (MatrixType::Upper); SparseComplexCHOL fact (*this, info, false); rcond = fact.rcond(); if (info == 0) { double rcond2; SparseMatrix Q = fact.Q(); SparseComplexMatrix InvL = fact.L().transpose(). tinverse(tmp_typ, info, rcond2, true, false); ret = Q * InvL.hermitian() * InvL * Q.transpose(); } else { // Matrix is either singular or not positive definite mattype.mark_as_unsymmetric (); typ = MatrixType::Full; } } if (!mattype.is_hermitian()) { octave_idx_type n = rows(); ColumnVector Qinit(n); for (octave_idx_type i = 0; i < n; i++) Qinit(i) = i; MatrixType tmp_typ (MatrixType::Upper); SparseComplexLU fact (*this, Qinit, Matrix (), false, false); rcond = fact.rcond(); double rcond2; SparseComplexMatrix InvL = fact.L().transpose(). tinverse(tmp_typ, info, rcond2, true, false); SparseComplexMatrix InvU = fact.U(). tinverse(tmp_typ, info, rcond2, true, false).transpose(); ret = fact.Pc().transpose() * InvU * InvL * fact.Pr(); } } return ret; } ComplexDET SparseComplexMatrix::determinant (void) const { octave_idx_type info; double rcond; return determinant (info, rcond, 0); } ComplexDET SparseComplexMatrix::determinant (octave_idx_type& info) const { double rcond; return determinant (info, rcond, 0); } ComplexDET SparseComplexMatrix::determinant (octave_idx_type& err, double& rcond, int) const { ComplexDET retval; #ifdef HAVE_UMFPACK octave_idx_type nr = rows (); octave_idx_type nc = cols (); if (nr == 0 || nc == 0 || nr != nc) { retval = ComplexDET (1.0); } else { err = 0; // Setup the control parameters Matrix Control (UMFPACK_CONTROL, 1); double *control = Control.fortran_vec (); UMFPACK_ZNAME (defaults) (control); double tmp = octave_sparse_params::get_key ("spumoni"); if (!xisnan (tmp)) Control (UMFPACK_PRL) = tmp; tmp = octave_sparse_params::get_key ("piv_tol"); if (!xisnan (tmp)) { Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; Control (UMFPACK_PIVOT_TOLERANCE) = tmp; } // Set whether we are allowed to modify Q or not tmp = octave_sparse_params::get_key ("autoamd"); if (!xisnan (tmp)) Control (UMFPACK_FIXQ) = tmp; // Turn-off UMFPACK scaling for LU Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE; UMFPACK_ZNAME (report_control) (control); const octave_idx_type *Ap = cidx (); const octave_idx_type *Ai = ridx (); const Complex *Ax = data (); UMFPACK_ZNAME (report_matrix) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, 1, control); void *Symbolic; Matrix Info (1, UMFPACK_INFO); double *info = Info.fortran_vec (); int status = UMFPACK_ZNAME (qsymbolic) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, 0, &Symbolic, control, info); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::determinant symbolic factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; } else { UMFPACK_ZNAME (report_symbolic) (Symbolic, control); void *Numeric; status = UMFPACK_ZNAME (numeric) (Ap, Ai, reinterpret_cast<const double *> (Ax), 0, Symbolic, &Numeric, control, info) ; UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; rcond = Info (UMFPACK_RCOND); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::determinant numeric factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else { UMFPACK_ZNAME (report_numeric) (Numeric, control); double c10[2], e10; status = UMFPACK_ZNAME (get_determinant) (c10, 0, &e10, Numeric, info); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::determinant error calculating determinant"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); } else retval = ComplexDET (Complex (c10[0], c10[1]), e10, 10); UMFPACK_ZNAME (free_numeric) (&Numeric); } } } #else (*current_liboctave_error_handler) ("UMFPACK not installed"); #endif return retval; } ComplexMatrix SparseComplexMatrix::dsolve (MatrixType &mattype, const Matrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc < nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal) { retval.resize (nc, b.cols(), Complex(0.,0.)); if (typ == MatrixType::Diagonal) for (octave_idx_type j = 0; j < b.cols(); j++) for (octave_idx_type i = 0; i < nm; i++) retval(i,j) = b(i,j) / data (i); else for (octave_idx_type j = 0; j < b.cols(); j++) for (octave_idx_type k = 0; k < nc; k++) for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) retval(k,j) = b(ridx(i),j) / data (i); if (calc_cond) { double dmax = 0., dmin = octave_Inf; for (octave_idx_type i = 0; i < nm; i++) { double tmp = std::abs(data(i)); if (tmp > dmax) dmax = tmp; if (tmp < dmin) dmin = tmp; } rcond = dmin / dmax; } else rcond = 1.0; } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::dsolve (MatrixType &mattype, const SparseMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc < nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal) { octave_idx_type b_nc = b.cols (); octave_idx_type b_nz = b.nnz (); retval = SparseComplexMatrix (nc, b_nc, b_nz); retval.xcidx(0) = 0; octave_idx_type ii = 0; if (typ == MatrixType::Diagonal) for (octave_idx_type j = 0; j < b.cols(); j++) { for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) { if (b.ridx(i) >= nm) break; retval.xridx (ii) = b.ridx(i); retval.xdata (ii++) = b.data(i) / data (b.ridx (i)); } retval.xcidx(j+1) = ii; } else for (octave_idx_type j = 0; j < b.cols(); j++) { for (octave_idx_type l = 0; l < nc; l++) for (octave_idx_type i = cidx(l); i < cidx(l+1); i++) { bool found = false; octave_idx_type k; for (k = b.cidx(j); k < b.cidx(j+1); k++) if (ridx(i) == b.ridx(k)) { found = true; break; } if (found) { retval.xridx (ii) = l; retval.xdata (ii++) = b.data(k) / data (i); } } retval.xcidx(j+1) = ii; } if (calc_cond) { double dmax = 0., dmin = octave_Inf; for (octave_idx_type i = 0; i < nm; i++) { double tmp = std::abs(data(i)); if (tmp > dmax) dmax = tmp; if (tmp < dmin) dmin = tmp; } rcond = dmin / dmax; } else rcond = 1.0; } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::dsolve (MatrixType &mattype, const ComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc < nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal) { retval.resize (nc, b.cols(), Complex(0.,0.)); if (typ == MatrixType::Diagonal) for (octave_idx_type j = 0; j < b.cols(); j++) for (octave_idx_type i = 0; i < nm; i++) retval(i,j) = b(i,j) / data (i); else for (octave_idx_type j = 0; j < b.cols(); j++) for (octave_idx_type k = 0; k < nc; k++) for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) retval(k,j) = b(ridx(i),j) / data (i); if (calc_cond) { double dmax = 0., dmin = octave_Inf; for (octave_idx_type i = 0; i < nr; i++) { double tmp = std::abs(data(i)); if (tmp > dmax) dmax = tmp; if (tmp < dmin) dmin = tmp; } rcond = dmin / dmax; } else rcond = 1.0; } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::dsolve (MatrixType &mattype, const SparseComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc < nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal) { octave_idx_type b_nc = b.cols (); octave_idx_type b_nz = b.nnz (); retval = SparseComplexMatrix (nc, b_nc, b_nz); retval.xcidx(0) = 0; octave_idx_type ii = 0; if (typ == MatrixType::Diagonal) for (octave_idx_type j = 0; j < b.cols(); j++) { for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) { if (b.ridx(i) >= nm) break; retval.xridx (ii) = b.ridx(i); retval.xdata (ii++) = b.data(i) / data (b.ridx (i)); } retval.xcidx(j+1) = ii; } else for (octave_idx_type j = 0; j < b.cols(); j++) { for (octave_idx_type l = 0; l < nc; l++) for (octave_idx_type i = cidx(l); i < cidx(l+1); i++) { bool found = false; octave_idx_type k; for (k = b.cidx(j); k < b.cidx(j+1); k++) if (ridx(i) == b.ridx(k)) { found = true; break; } if (found) { retval.xridx (ii) = l; retval.xdata (ii++) = b.data(k) / data (i); } } retval.xcidx(j+1) = ii; } if (calc_cond) { double dmax = 0., dmin = octave_Inf; for (octave_idx_type i = 0; i < nm; i++) { double tmp = std::abs(data(i)); if (tmp > dmax) dmax = tmp; if (tmp < dmin) dmin = tmp; } rcond = dmin / dmax; } else rcond = 1.0; } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::utsolve (MatrixType &mattype, const Matrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc > nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Permuted_Upper || typ == MatrixType::Upper) { double anorm = 0.; double ainvnorm = 0.; octave_idx_type b_nc = b.cols (); rcond = 1.; if (calc_cond) { // Calculate the 1-norm of matrix for rcond calculation for (octave_idx_type j = 0; j < nc; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } if (typ == MatrixType::Permuted_Upper) { retval.resize (nc, b_nc); octave_idx_type *perm = mattype.triangular_perm (); OCTAVE_LOCAL_BUFFER (Complex, work, nm); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nr; i++) work[i] = b(i,j); for (octave_idx_type i = nr; i < nc; i++) work[i] = 0.; for (octave_idx_type k = nc-1; k >= 0; k--) { octave_idx_type kidx = perm[k]; if (work[k] != 0.) { if (ridx(cidx(kidx+1)-1) != k || data(cidx(kidx+1)-1) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(kidx+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(kidx); i < cidx(kidx+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } for (octave_idx_type i = 0; i < nc; i++) retval (perm[i], j) = work[i]; } if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k >= 0; k--) { octave_idx_type iidx = perm[k]; if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(iidx+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(iidx); i < cidx(iidx+1)-1; i++) { octave_idx_type idx2 = ridx(i); work[idx2] = work[idx2] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = 0; i < j+1; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } else { OCTAVE_LOCAL_BUFFER (Complex, work, nm); retval.resize (nc, b_nc); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nr; i++) work[i] = b(i,j); for (octave_idx_type i = nr; i < nc; i++) work[i] = 0.; for (octave_idx_type k = nc-1; k >= 0; k--) { if (work[k] != 0.) { if (ridx(cidx(k+1)-1) != k || data(cidx(k+1)-1) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(k+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } for (octave_idx_type i = 0; i < nc; i++) retval.xelem (i, j) = work[i]; } if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k >= 0; k--) { if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(k+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = 0; i < j+1; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } triangular_error: if (err != 0) { if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseComplexMatrix::solve matrix singular to machine precision, rcond = %g", rcond); } volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::utsolve (MatrixType &mattype, const SparseMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc > nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Permuted_Upper || typ == MatrixType::Upper) { double anorm = 0.; double ainvnorm = 0.; rcond = 1.; if (calc_cond) { // Calculate the 1-norm of matrix for rcond calculation for (octave_idx_type j = 0; j < nc; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } octave_idx_type b_nc = b.cols (); octave_idx_type b_nz = b.nnz (); retval = SparseComplexMatrix (nc, b_nc, b_nz); retval.xcidx(0) = 0; octave_idx_type ii = 0; octave_idx_type x_nz = b_nz; if (typ == MatrixType::Permuted_Upper) { octave_idx_type *perm = mattype.triangular_perm (); OCTAVE_LOCAL_BUFFER (Complex, work, nm); OCTAVE_LOCAL_BUFFER (octave_idx_type, rperm, nc); for (octave_idx_type i = 0; i < nc; i++) rperm[perm[i]] = i; for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) work[b.ridx(i)] = b.data(i); for (octave_idx_type k = nc-1; k >= 0; k--) { octave_idx_type kidx = perm[k]; if (work[k] != 0.) { if (ridx(cidx(kidx+1)-1) != k || data(cidx(kidx+1)-1) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(kidx+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(kidx); i < cidx(kidx+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } // Count non-zeros in work vector and adjust space in // retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nc; i++) if (work[rperm[i]] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = work[rperm[i]]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k >= 0; k--) { octave_idx_type iidx = perm[k]; if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(iidx+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(iidx); i < cidx(iidx+1)-1; i++) { octave_idx_type idx2 = ridx(i); work[idx2] = work[idx2] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = 0; i < j+1; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } else { OCTAVE_LOCAL_BUFFER (Complex, work, nm); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) work[b.ridx(i)] = b.data(i); for (octave_idx_type k = nc-1; k >= 0; k--) { if (work[k] != 0.) { if (ridx(cidx(k+1)-1) != k || data(cidx(k+1)-1) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(k+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } // Count non-zeros in work vector and adjust space in // retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = work[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k >= 0; k--) { if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(k+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = 0; i < j+1; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } triangular_error: if (err != 0) { if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseComplexMatrix::solve matrix singular to machine precision, rcond = %g", rcond); } volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::utsolve (MatrixType &mattype, const ComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc > nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Permuted_Upper || typ == MatrixType::Upper) { double anorm = 0.; double ainvnorm = 0.; octave_idx_type b_nc = b.cols (); rcond = 1.; if (calc_cond) { // Calculate the 1-norm of matrix for rcond calculation for (octave_idx_type j = 0; j < nc; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } if (typ == MatrixType::Permuted_Upper) { retval.resize (nc, b_nc); octave_idx_type *perm = mattype.triangular_perm (); OCTAVE_LOCAL_BUFFER (Complex, work, nm); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nr; i++) work[i] = b(i,j); for (octave_idx_type i = nr; i < nc; i++) work[i] = 0.; for (octave_idx_type k = nc-1; k >= 0; k--) { octave_idx_type kidx = perm[k]; if (work[k] != 0.) { if (ridx(cidx(kidx+1)-1) != k || data(cidx(kidx+1)-1) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(kidx+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(kidx); i < cidx(kidx+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } for (octave_idx_type i = 0; i < nc; i++) retval (perm[i], j) = work[i]; } if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k >= 0; k--) { octave_idx_type iidx = perm[k]; if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(iidx+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(iidx); i < cidx(iidx+1)-1; i++) { octave_idx_type idx2 = ridx(i); work[idx2] = work[idx2] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = 0; i < j+1; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } else { OCTAVE_LOCAL_BUFFER (Complex, work, nm); retval.resize (nc, b_nc); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nr; i++) work[i] = b(i,j); for (octave_idx_type i = nr; i < nc; i++) work[i] = 0.; for (octave_idx_type k = nc-1; k >= 0; k--) { if (work[k] != 0.) { if (ridx(cidx(k+1)-1) != k || data(cidx(k+1)-1) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(k+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } for (octave_idx_type i = 0; i < nc; i++) retval.xelem (i, j) = work[i]; } if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k >= 0; k--) { if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(k+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = 0; i < j+1; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } triangular_error: if (err != 0) { if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseComplexMatrix::solve matrix singular to machine precision, rcond = %g", rcond); } volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::utsolve (MatrixType &mattype, const SparseComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc > nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Permuted_Upper || typ == MatrixType::Upper) { double anorm = 0.; double ainvnorm = 0.; rcond = 1.; if (calc_cond) { // Calculate the 1-norm of matrix for rcond calculation for (octave_idx_type j = 0; j < nc; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } octave_idx_type b_nc = b.cols (); octave_idx_type b_nz = b.nnz (); retval = SparseComplexMatrix (nc, b_nc, b_nz); retval.xcidx(0) = 0; octave_idx_type ii = 0; octave_idx_type x_nz = b_nz; if (typ == MatrixType::Permuted_Upper) { octave_idx_type *perm = mattype.triangular_perm (); OCTAVE_LOCAL_BUFFER (Complex, work, nm); OCTAVE_LOCAL_BUFFER (octave_idx_type, rperm, nc); for (octave_idx_type i = 0; i < nc; i++) rperm[perm[i]] = i; for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) work[b.ridx(i)] = b.data(i); for (octave_idx_type k = nc-1; k >= 0; k--) { octave_idx_type kidx = perm[k]; if (work[k] != 0.) { if (ridx(cidx(kidx+1)-1) != k || data(cidx(kidx+1)-1) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(kidx+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(kidx); i < cidx(kidx+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } // Count non-zeros in work vector and adjust space in // retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nc; i++) if (work[rperm[i]] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = work[rperm[i]]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k >= 0; k--) { octave_idx_type iidx = perm[k]; if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(iidx+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(iidx); i < cidx(iidx+1)-1; i++) { octave_idx_type idx2 = ridx(i); work[idx2] = work[idx2] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = 0; i < j+1; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } else { OCTAVE_LOCAL_BUFFER (Complex, work, nm); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) work[b.ridx(i)] = b.data(i); for (octave_idx_type k = nr-1; k >= 0; k--) { if (work[k] != 0.) { if (ridx(cidx(k+1)-1) != k || data(cidx(k+1)-1) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(k+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } // Count non-zeros in work vector and adjust space in // retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = work[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k >= 0; k--) { if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(k+1)-1); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1)-1; i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = 0; i < j+1; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } triangular_error: if (err != 0) { if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseComplexMatrix::solve matrix singular to machine precision, rcond = %g", rcond); } volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::ltsolve (MatrixType &mattype, const Matrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc > nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Permuted_Lower || typ == MatrixType::Lower) { double anorm = 0.; double ainvnorm = 0.; octave_idx_type b_nc = b.cols (); rcond = 1.; if (calc_cond) { // Calculate the 1-norm of matrix for rcond calculation for (octave_idx_type j = 0; j < nc; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } if (typ == MatrixType::Permuted_Lower) { retval.resize (nc, b_nc); OCTAVE_LOCAL_BUFFER (Complex, work, nm); octave_idx_type *perm = mattype.triangular_perm (); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type i = 0; i < nr; i++) work[perm[i]] = b(i,j); for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { octave_idx_type minr = nr; octave_idx_type mini = 0; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) if (perm[ridx(i)] < minr) { minr = perm[ridx(i)]; mini = i; } if (minr != k || data (mini) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(mini); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) { if (i == mini) continue; octave_idx_type iidx = perm[ridx(i)]; work[iidx] = work[iidx] - tmp * data(i); } } } for (octave_idx_type i = 0; i < nc; i++) retval (i, j) = work[i]; } if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { octave_idx_type minr = nr; octave_idx_type mini = 0; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) if (perm[ridx(i)] < minr) { minr = perm[ridx(i)]; mini = i; } Complex tmp = work[k] / data(mini); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) { if (i == mini) continue; octave_idx_type iidx = perm[ridx(i)]; work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = j; i < nc; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } else { OCTAVE_LOCAL_BUFFER (Complex, work, nm); retval.resize (nc, b_nc, 0.); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nr; i++) work[i] = b(i,j); for (octave_idx_type i = nr; i < nc; i++) work[i] = 0.; for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { if (ridx(cidx(k)) != k || data(cidx(k)) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(k)); work[k] = tmp; for (octave_idx_type i = cidx(k)+1; i < cidx(k+1); i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } for (octave_idx_type i = 0; i < nc; i++) retval.xelem (i, j) = work[i]; } if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k < nc; k++) { if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(k)); work[k] = tmp; for (octave_idx_type i = cidx(k)+1; i < cidx(k+1); i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = j; i < nc; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } triangular_error: if (err != 0) { if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseComplexMatrix::solve matrix singular to machine precision, rcond = %g", rcond); } volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::ltsolve (MatrixType &mattype, const SparseMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc > nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Permuted_Lower || typ == MatrixType::Lower) { double anorm = 0.; double ainvnorm = 0.; rcond = 1.; if (calc_cond) { // Calculate the 1-norm of matrix for rcond calculation for (octave_idx_type j = 0; j < nc; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } octave_idx_type b_nc = b.cols (); octave_idx_type b_nz = b.nnz (); retval = SparseComplexMatrix (nc, b_nc, b_nz); retval.xcidx(0) = 0; octave_idx_type ii = 0; octave_idx_type x_nz = b_nz; if (typ == MatrixType::Permuted_Lower) { OCTAVE_LOCAL_BUFFER (Complex, work, nm); octave_idx_type *perm = mattype.triangular_perm (); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) work[perm[b.ridx(i)]] = b.data(i); for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { octave_idx_type minr = nr; octave_idx_type mini = 0; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) if (perm[ridx(i)] < minr) { minr = perm[ridx(i)]; mini = i; } if (minr != k || data (mini) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(mini); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) { if (i == mini) continue; octave_idx_type iidx = perm[ridx(i)]; work[iidx] = work[iidx] - tmp * data(i); } } } // Count non-zeros in work vector and adjust space in // retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = work[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { octave_idx_type minr = nr; octave_idx_type mini = 0; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) if (perm[ridx(i)] < minr) { minr = perm[ridx(i)]; mini = i; } Complex tmp = work[k] / data(mini); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) { if (i == mini) continue; octave_idx_type iidx = perm[ridx(i)]; work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = j; i < nc; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } else { OCTAVE_LOCAL_BUFFER (Complex, work, nm); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) work[b.ridx(i)] = b.data(i); for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { if (ridx(cidx(k)) != k || data(cidx(k)) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(k)); work[k] = tmp; for (octave_idx_type i = cidx(k)+1; i < cidx(k+1); i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } // Count non-zeros in work vector and adjust space in // retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = work[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k < nc; k++) { if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(k)); work[k] = tmp; for (octave_idx_type i = cidx(k)+1; i < cidx(k+1); i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = j; i < nc; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } triangular_error: if (err != 0) { if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseComplexMatrix::solve matrix singular to machine precision, rcond = %g", rcond); } volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::ltsolve (MatrixType &mattype, const ComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc > nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Permuted_Lower || typ == MatrixType::Lower) { double anorm = 0.; double ainvnorm = 0.; octave_idx_type b_nc = b.cols (); rcond = 1.; if (calc_cond) { // Calculate the 1-norm of matrix for rcond calculation for (octave_idx_type j = 0; j < nc; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } if (typ == MatrixType::Permuted_Lower) { retval.resize (nc, b_nc); OCTAVE_LOCAL_BUFFER (Complex, work, nm); octave_idx_type *perm = mattype.triangular_perm (); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type i = 0; i < nr; i++) work[perm[i]] = b(i,j); for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { octave_idx_type minr = nr; octave_idx_type mini = 0; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) if (perm[ridx(i)] < minr) { minr = perm[ridx(i)]; mini = i; } if (minr != k || data (mini) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(mini); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) { if (i == mini) continue; octave_idx_type iidx = perm[ridx(i)]; work[iidx] = work[iidx] - tmp * data(i); } } } for (octave_idx_type i = 0; i < nc; i++) retval (i, j) = work[i]; } if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { octave_idx_type minr = nr; octave_idx_type mini = 0; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) if (perm[ridx(i)] < minr) { minr = perm[ridx(i)]; mini = i; } Complex tmp = work[k] / data(mini); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) { if (i == mini) continue; octave_idx_type iidx = perm[ridx(i)]; work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = j; i < nc; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } else { OCTAVE_LOCAL_BUFFER (Complex, work, nm); retval.resize (nc, b_nc, 0.); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nr; i++) work[i] = b(i,j); for (octave_idx_type i = nr; i < nc; i++) work[i] = 0.; for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { if (ridx(cidx(k)) != k || data(cidx(k)) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(k)); work[k] = tmp; for (octave_idx_type i = cidx(k)+1; i < cidx(k+1); i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } for (octave_idx_type i = 0; i < nc; i++) retval.xelem (i, j) = work[i]; } if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k < nc; k++) { if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(k)); work[k] = tmp; for (octave_idx_type i = cidx(k)+1; i < cidx(k+1); i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = j; i < nc; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } triangular_error: if (err != 0) { if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseComplexMatrix::solve matrix singular to machine precision, rcond = %g", rcond); } volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::ltsolve (MatrixType &mattype, const SparseComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nm = (nc > nr ? nc : nr); err = 0; if (nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || nc == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Permuted_Lower || typ == MatrixType::Lower) { double anorm = 0.; double ainvnorm = 0.; rcond = 1.; if (calc_cond) { // Calculate the 1-norm of matrix for rcond calculation for (octave_idx_type j = 0; j < nc; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } octave_idx_type b_nc = b.cols (); octave_idx_type b_nz = b.nnz (); retval = SparseComplexMatrix (nc, b_nc, b_nz); retval.xcidx(0) = 0; octave_idx_type ii = 0; octave_idx_type x_nz = b_nz; if (typ == MatrixType::Permuted_Lower) { OCTAVE_LOCAL_BUFFER (Complex, work, nm); octave_idx_type *perm = mattype.triangular_perm (); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) work[perm[b.ridx(i)]] = b.data(i); for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { octave_idx_type minr = nr; octave_idx_type mini = 0; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) if (perm[ridx(i)] < minr) { minr = perm[ridx(i)]; mini = i; } if (minr != k || data (mini) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(mini); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) { if (i == mini) continue; octave_idx_type iidx = perm[ridx(i)]; work[iidx] = work[iidx] - tmp * data(i); } } } // Count non-zeros in work vector and adjust space in // retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = work[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { octave_idx_type minr = nr; octave_idx_type mini = 0; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) if (perm[ridx(i)] < minr) { minr = perm[ridx(i)]; mini = i; } Complex tmp = work[k] / data(mini); work[k] = tmp; for (octave_idx_type i = cidx(k); i < cidx(k+1); i++) { if (i == mini) continue; octave_idx_type iidx = perm[ridx(i)]; work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = j; i < nc; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } else { OCTAVE_LOCAL_BUFFER (Complex, work, nm); for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) work[b.ridx(i)] = b.data(i); for (octave_idx_type k = 0; k < nc; k++) { if (work[k] != 0.) { if (ridx(cidx(k)) != k || data(cidx(k)) == 0.) { err = -2; goto triangular_error; } Complex tmp = work[k] / data(cidx(k)); work[k] = tmp; for (octave_idx_type i = cidx(k)+1; i < cidx(k+1); i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } // Count non-zeros in work vector and adjust space in // retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nc; i++) if (work[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = work[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); if (calc_cond) { // Calculation of 1-norm of inv(*this) for (octave_idx_type i = 0; i < nm; i++) work[i] = 0.; for (octave_idx_type j = 0; j < nr; j++) { work[j] = 1.; for (octave_idx_type k = j; k < nc; k++) { if (work[k] != 0.) { Complex tmp = work[k] / data(cidx(k)); work[k] = tmp; for (octave_idx_type i = cidx(k)+1; i < cidx(k+1); i++) { octave_idx_type iidx = ridx(i); work[iidx] = work[iidx] - tmp * data(i); } } } double atmp = 0; for (octave_idx_type i = j; i < nc; i++) { atmp += std::abs(work[i]); work[i] = 0.; } if (atmp > ainvnorm) ainvnorm = atmp; } rcond = 1. / ainvnorm / anorm; } } triangular_error: if (err != 0) { if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseComplexMatrix::solve matrix singular to machine precision, rcond = %g", rcond); } volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::trisolve (MatrixType &mattype, const Matrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else if (calc_cond) (*current_liboctave_error_handler) ("calculation of condition number not implemented"); else { // Print spparms("spumoni") info if requested volatile int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Tridiagonal_Hermitian) { OCTAVE_LOCAL_BUFFER (double, D, nr); OCTAVE_LOCAL_BUFFER (Complex, DL, nr - 1); if (mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < nc-1; j++) { D[j] = std::real(data(ii++)); DL[j] = data(ii); ii += 2; } D[nc-1] = std::real(data(ii)); } else { D[0] = 0.; for (octave_idx_type i = 0; i < nr - 1; i++) { D[i+1] = 0.; DL[i] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { if (ridx(i) == j) D[j] = std::real(data(i)); else if (ridx(i) == j + 1) DL[j] = data(i); } } octave_idx_type b_nc = b.cols(); retval = ComplexMatrix (b); Complex *result = retval.fortran_vec (); F77_XFCN (zptsv, ZPTSV, (nr, b_nc, D, DL, result, b.rows(), err)); if (err != 0) { err = 0; mattype.mark_as_unsymmetric (); typ = MatrixType::Tridiagonal; } else rcond = 1.; } if (typ == MatrixType::Tridiagonal) { OCTAVE_LOCAL_BUFFER (Complex, DU, nr - 1); OCTAVE_LOCAL_BUFFER (Complex, D, nr); OCTAVE_LOCAL_BUFFER (Complex, DL, nr - 1); if (mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < nc-1; j++) { D[j] = data(ii++); DL[j] = data(ii++); DU[j] = data(ii++); } D[nc-1] = data(ii); } else { D[0] = 0.; for (octave_idx_type i = 0; i < nr - 1; i++) { D[i+1] = 0.; DL[i] = 0.; DU[i] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { if (ridx(i) == j) D[j] = data(i); else if (ridx(i) == j + 1) DL[j] = data(i); else if (ridx(i) == j - 1) DU[j-1] = data(i); } } octave_idx_type b_nc = b.cols(); retval = ComplexMatrix (b); Complex *result = retval.fortran_vec (); F77_XFCN (zgtsv, ZGTSV, (nr, b_nc, DL, D, DU, result, b.rows(), err)); if (err != 0) { rcond = 0.; err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision"); } else rcond = 1.; } else if (typ != MatrixType::Tridiagonal_Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::trisolve (MatrixType &mattype, const SparseMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else if (calc_cond) (*current_liboctave_error_handler) ("calculation of condition number not implemented"); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); // Note can't treat symmetric case as there is no dpttrf function if (typ == MatrixType::Tridiagonal || typ == MatrixType::Tridiagonal_Hermitian) { OCTAVE_LOCAL_BUFFER (Complex, DU2, nr - 2); OCTAVE_LOCAL_BUFFER (Complex, DU, nr - 1); OCTAVE_LOCAL_BUFFER (Complex, D, nr); OCTAVE_LOCAL_BUFFER (Complex, DL, nr - 1); Array<octave_idx_type> ipvt (dim_vector (nr, 1)); octave_idx_type *pipvt = ipvt.fortran_vec (); if (mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < nc-1; j++) { D[j] = data(ii++); DL[j] = data(ii++); DU[j] = data(ii++); } D[nc-1] = data(ii); } else { D[0] = 0.; for (octave_idx_type i = 0; i < nr - 1; i++) { D[i+1] = 0.; DL[i] = 0.; DU[i] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { if (ridx(i) == j) D[j] = data(i); else if (ridx(i) == j + 1) DL[j] = data(i); else if (ridx(i) == j - 1) DU[j-1] = data(i); } } F77_XFCN (zgttrf, ZGTTRF, (nr, DL, D, DU, DU2, pipvt, err)); if (err != 0) { err = -2; rcond = 0.0; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision"); } else { char job = 'N'; volatile octave_idx_type x_nz = b.nnz (); octave_idx_type b_nc = b.cols (); retval = SparseComplexMatrix (nr, b_nc, x_nz); retval.xcidx(0) = 0; volatile octave_idx_type ii = 0; rcond = 1.0; OCTAVE_LOCAL_BUFFER (Complex, work, nr); for (volatile octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nr; i++) work[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) work[b.ridx(i)] = b.data(i); F77_XFCN (zgttrs, ZGTTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, 1, DL, D, DU, DU2, pipvt, work, b.rows (), err F77_CHAR_ARG_LEN (1))); // Count non-zeros in work vector and adjust // space in retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nr; i++) if (work[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nr; i++) if (work[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = work[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); } } else if (typ != MatrixType::Tridiagonal_Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::trisolve (MatrixType &mattype, const ComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else if (calc_cond) (*current_liboctave_error_handler) ("calculation of condition number not implemented"); else { // Print spparms("spumoni") info if requested volatile int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Tridiagonal_Hermitian) { OCTAVE_LOCAL_BUFFER (double, D, nr); OCTAVE_LOCAL_BUFFER (Complex, DL, nr - 1); if (mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < nc-1; j++) { D[j] = std::real(data(ii++)); DL[j] = data(ii); ii += 2; } D[nc-1] = std::real(data(ii)); } else { D[0] = 0.; for (octave_idx_type i = 0; i < nr - 1; i++) { D[i+1] = 0.; DL[i] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { if (ridx(i) == j) D[j] = std::real (data(i)); else if (ridx(i) == j + 1) DL[j] = data(i); } } octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols(); rcond = 1.; retval = ComplexMatrix (b); Complex *result = retval.fortran_vec (); F77_XFCN (zptsv, ZPTSV, (nr, b_nc, D, DL, result, b_nr, err)); if (err != 0) { err = 0; mattype.mark_as_unsymmetric (); typ = MatrixType::Tridiagonal; } } if (typ == MatrixType::Tridiagonal) { OCTAVE_LOCAL_BUFFER (Complex, DU, nr - 1); OCTAVE_LOCAL_BUFFER (Complex, D, nr); OCTAVE_LOCAL_BUFFER (Complex, DL, nr - 1); if (mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < nc-1; j++) { D[j] = data(ii++); DL[j] = data(ii++); DU[j] = data(ii++); } D[nc-1] = data(ii); } else { D[0] = 0.; for (octave_idx_type i = 0; i < nr - 1; i++) { D[i+1] = 0.; DL[i] = 0.; DU[i] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { if (ridx(i) == j) D[j] = data(i); else if (ridx(i) == j + 1) DL[j] = data(i); else if (ridx(i) == j - 1) DU[j-1] = data(i); } } octave_idx_type b_nr = b.rows(); octave_idx_type b_nc = b.cols(); rcond = 1.; retval = ComplexMatrix (b); Complex *result = retval.fortran_vec (); F77_XFCN (zgtsv, ZGTSV, (nr, b_nc, DL, D, DU, result, b_nr, err)); if (err != 0) { rcond = 0.; err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision"); } } else if (typ != MatrixType::Tridiagonal_Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::trisolve (MatrixType &mattype, const SparseComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else if (calc_cond) (*current_liboctave_error_handler) ("calculation of condition number not implemented"); else { // Print spparms("spumoni") info if requested int typ = mattype.type (); mattype.info (); // Note can't treat symmetric case as there is no dpttrf function if (typ == MatrixType::Tridiagonal || typ == MatrixType::Tridiagonal_Hermitian) { OCTAVE_LOCAL_BUFFER (Complex, DU2, nr - 2); OCTAVE_LOCAL_BUFFER (Complex, DU, nr - 1); OCTAVE_LOCAL_BUFFER (Complex, D, nr); OCTAVE_LOCAL_BUFFER (Complex, DL, nr - 1); Array<octave_idx_type> ipvt (dim_vector (nr, 1)); octave_idx_type *pipvt = ipvt.fortran_vec (); if (mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < nc-1; j++) { D[j] = data(ii++); DL[j] = data(ii++); DU[j] = data(ii++); } D[nc-1] = data(ii); } else { D[0] = 0.; for (octave_idx_type i = 0; i < nr - 1; i++) { D[i+1] = 0.; DL[i] = 0.; DU[i] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { if (ridx(i) == j) D[j] = data(i); else if (ridx(i) == j + 1) DL[j] = data(i); else if (ridx(i) == j - 1) DU[j-1] = data(i); } } F77_XFCN (zgttrf, ZGTTRF, (nr, DL, D, DU, DU2, pipvt, err)); if (err != 0) { rcond = 0.0; err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision"); } else { rcond = 1.; char job = 'N'; octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); OCTAVE_LOCAL_BUFFER (Complex, Bx, b_nr); // Take a first guess that the number of non-zero terms // will be as many as in b volatile octave_idx_type x_nz = b.nnz (); volatile octave_idx_type ii = 0; retval = SparseComplexMatrix (b_nr, b_nc, x_nz); retval.xcidx(0) = 0; for (volatile octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < b_nr; i++) Bx[i] = b (i,j); F77_XFCN (zgttrs, ZGTTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, 1, DL, D, DU, DU2, pipvt, Bx, b_nr, err F77_CHAR_ARG_LEN (1))); if (err != 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::solve solve failed"); err = -1; break; } // Count non-zeros in work vector and adjust // space in retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nr; i++) if (Bx[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nr; i++) if (Bx[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = Bx[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); } } else if (typ != MatrixType::Tridiagonal_Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::bsolve (MatrixType &mattype, const Matrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else { // Print spparms("spumoni") info if requested volatile int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Banded_Hermitian) { octave_idx_type n_lower = mattype.nlower (); octave_idx_type ldm = n_lower + 1; ComplexMatrix m_band (ldm, nc); Complex *tmp_data = m_band.fortran_vec (); if (! mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < ldm; j++) for (octave_idx_type i = 0; i < nc; i++) tmp_data[ii++] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { octave_idx_type ri = ridx (i); if (ri >= j) m_band(ri - j, j) = data(i); } // Calculate the norm of the matrix, for later use. double anorm; if (calc_cond) anorm = m_band.abs().sum().row(0).max(); char job = 'L'; F77_XFCN (zpbtrf, ZPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, tmp_data, ldm, err F77_CHAR_ARG_LEN (1))); if (err != 0) { rcond = 0.0; // Matrix is not positive definite!! Fall through to // unsymmetric banded solver. mattype.mark_as_unsymmetric (); typ = MatrixType::Banded; err = 0; } else { if (calc_cond) { Array<Complex> z (dim_vector (2 * nr, 1)); Complex *pz = z.fortran_vec (); Array<double> iz (dim_vector (nr, 1)); double *piz = iz.fortran_vec (); F77_XFCN (zpbcon, ZPBCON, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, tmp_data, ldm, anorm, rcond, pz, piz, err F77_CHAR_ARG_LEN (1))); if (err != 0) err = -2; volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else rcond = 1.0; if (err == 0) { retval = ComplexMatrix (b); Complex *result = retval.fortran_vec (); octave_idx_type b_nc = b.cols (); F77_XFCN (zpbtrs, ZPBTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, b_nc, tmp_data, ldm, result, b.rows(), err F77_CHAR_ARG_LEN (1))); if (err != 0) { (*current_liboctave_error_handler) ("SparseMatrix::solve solve failed"); err = -1; } } } } if (typ == MatrixType::Banded) { // Create the storage for the banded form of the sparse matrix octave_idx_type n_upper = mattype.nupper (); octave_idx_type n_lower = mattype.nlower (); octave_idx_type ldm = n_upper + 2 * n_lower + 1; ComplexMatrix m_band (ldm, nc); Complex *tmp_data = m_band.fortran_vec (); if (! mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < ldm; j++) for (octave_idx_type i = 0; i < nc; i++) tmp_data[ii++] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) m_band(ridx(i) - j + n_lower + n_upper, j) = data(i); // Calculate the norm of the matrix, for later use. double anorm; if (calc_cond) { for (octave_idx_type j = 0; j < nr; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } Array<octave_idx_type> ipvt (dim_vector (nr, 1)); octave_idx_type *pipvt = ipvt.fortran_vec (); F77_XFCN (zgbtrf, ZGBTRF, (nr, nc, n_lower, n_upper, tmp_data, ldm, pipvt, err)); // Throw-away extra info LAPACK gives so as to not // change output. if (err != 0) { rcond = 0.0; err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision"); } else { if (calc_cond) { char job = '1'; Array<Complex> z (dim_vector (2 * nr, 1)); Complex *pz = z.fortran_vec (); Array<double> iz (dim_vector (nr, 1)); double *piz = iz.fortran_vec (); F77_XFCN (zgbcon, ZGBCON, (F77_CONST_CHAR_ARG2 (&job, 1), nc, n_lower, n_upper, tmp_data, ldm, pipvt, anorm, rcond, pz, piz, err F77_CHAR_ARG_LEN (1))); if (err != 0) err = -2; volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else rcond = 1.; if (err == 0) { retval = ComplexMatrix (b); Complex *result = retval.fortran_vec (); octave_idx_type b_nc = b.cols (); char job = 'N'; F77_XFCN (zgbtrs, ZGBTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, n_upper, b_nc, tmp_data, ldm, pipvt, result, b.rows(), err F77_CHAR_ARG_LEN (1))); } } } else if (typ != MatrixType::Banded_Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::bsolve (MatrixType &mattype, const SparseMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else { // Print spparms("spumoni") info if requested volatile int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Banded_Hermitian) { octave_idx_type n_lower = mattype.nlower (); octave_idx_type ldm = n_lower + 1; ComplexMatrix m_band (ldm, nc); Complex *tmp_data = m_band.fortran_vec (); if (! mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < ldm; j++) for (octave_idx_type i = 0; i < nc; i++) tmp_data[ii++] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { octave_idx_type ri = ridx (i); if (ri >= j) m_band(ri - j, j) = data(i); } // Calculate the norm of the matrix, for later use. double anorm; if (calc_cond) anorm = m_band.abs().sum().row(0).max(); char job = 'L'; F77_XFCN (zpbtrf, ZPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, tmp_data, ldm, err F77_CHAR_ARG_LEN (1))); if (err != 0) { rcond = 0.0; mattype.mark_as_unsymmetric (); typ = MatrixType::Banded; err = 0; } else { if (calc_cond) { Array<Complex> z (dim_vector (2 * nr, 1)); Complex *pz = z.fortran_vec (); Array<double> iz (dim_vector (nr, 1)); double *piz = iz.fortran_vec (); F77_XFCN (zpbcon, ZPBCON, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, tmp_data, ldm, anorm, rcond, pz, piz, err F77_CHAR_ARG_LEN (1))); if (err != 0) err = -2; volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else rcond = 1.0; if (err == 0) { octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); OCTAVE_LOCAL_BUFFER (Complex, Bx, b_nr); // Take a first guess that the number of non-zero terms // will be as many as in b volatile octave_idx_type x_nz = b.nnz (); volatile octave_idx_type ii = 0; retval = SparseComplexMatrix (b_nr, b_nc, x_nz); retval.xcidx(0) = 0; for (volatile octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < b_nr; i++) Bx[i] = b.elem (i, j); F77_XFCN (zpbtrs, ZPBTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, 1, tmp_data, ldm, Bx, b_nr, err F77_CHAR_ARG_LEN (1))); if (err != 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::solve solve failed"); err = -1; break; } for (octave_idx_type i = 0; i < b_nr; i++) { Complex tmp = Bx[i]; if (tmp != 0.0) { if (ii == x_nz) { // Resize the sparse matrix octave_idx_type sz = x_nz * (b_nc - j) / b_nc; sz = (sz > 10 ? sz : 10) + x_nz; retval.change_capacity (sz); x_nz = sz; } retval.xdata(ii) = tmp; retval.xridx(ii++) = i; } } retval.xcidx(j+1) = ii; } retval.maybe_compress (); } } } if (typ == MatrixType::Banded) { // Create the storage for the banded form of the sparse matrix octave_idx_type n_upper = mattype.nupper (); octave_idx_type n_lower = mattype.nlower (); octave_idx_type ldm = n_upper + 2 * n_lower + 1; ComplexMatrix m_band (ldm, nc); Complex *tmp_data = m_band.fortran_vec (); if (! mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < ldm; j++) for (octave_idx_type i = 0; i < nc; i++) tmp_data[ii++] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) m_band(ridx(i) - j + n_lower + n_upper, j) = data(i); // Calculate the norm of the matrix, for later use. double anorm; if (calc_cond) { for (octave_idx_type j = 0; j < nr; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } Array<octave_idx_type> ipvt (dim_vector (nr, 1)); octave_idx_type *pipvt = ipvt.fortran_vec (); F77_XFCN (zgbtrf, ZGBTRF, (nr, nr, n_lower, n_upper, tmp_data, ldm, pipvt, err)); if (err != 0) { rcond = 0.0; err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision"); } else { if (calc_cond) { char job = '1'; Array<Complex> z (dim_vector (2 * nr, 1)); Complex *pz = z.fortran_vec (); Array<double> iz (dim_vector (nr, 1)); double *piz = iz.fortran_vec (); F77_XFCN (zgbcon, ZGBCON, (F77_CONST_CHAR_ARG2 (&job, 1), nc, n_lower, n_upper, tmp_data, ldm, pipvt, anorm, rcond, pz, piz, err F77_CHAR_ARG_LEN (1))); if (err != 0) err = -2; volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else rcond = 1.; if (err == 0) { char job = 'N'; volatile octave_idx_type x_nz = b.nnz (); octave_idx_type b_nc = b.cols (); retval = SparseComplexMatrix (nr, b_nc, x_nz); retval.xcidx(0) = 0; volatile octave_idx_type ii = 0; OCTAVE_LOCAL_BUFFER (Complex, work, nr); for (volatile octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nr; i++) work[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) work[b.ridx(i)] = b.data(i); F77_XFCN (zgbtrs, ZGBTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, n_upper, 1, tmp_data, ldm, pipvt, work, b.rows (), err F77_CHAR_ARG_LEN (1))); // Count non-zeros in work vector and adjust // space in retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nr; i++) if (work[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nr; i++) if (work[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = work[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); } } } else if (typ != MatrixType::Banded_Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::bsolve (MatrixType &mattype, const ComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else { // Print spparms("spumoni") info if requested volatile int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Banded_Hermitian) { octave_idx_type n_lower = mattype.nlower (); octave_idx_type ldm = n_lower + 1; ComplexMatrix m_band (ldm, nc); Complex *tmp_data = m_band.fortran_vec (); if (! mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < ldm; j++) for (octave_idx_type i = 0; i < nc; i++) tmp_data[ii++] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { octave_idx_type ri = ridx (i); if (ri >= j) m_band(ri - j, j) = data(i); } // Calculate the norm of the matrix, for later use. double anorm; if (calc_cond) anorm = m_band.abs().sum().row(0).max(); char job = 'L'; F77_XFCN (zpbtrf, ZPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, tmp_data, ldm, err F77_CHAR_ARG_LEN (1))); if (err != 0) { // Matrix is not positive definite!! Fall through to // unsymmetric banded solver. rcond = 0.0; mattype.mark_as_unsymmetric (); typ = MatrixType::Banded; err = 0; } else { if (calc_cond) { Array<Complex> z (dim_vector (2 * nr, 1)); Complex *pz = z.fortran_vec (); Array<double> iz (dim_vector (nr, 1)); double *piz = iz.fortran_vec (); F77_XFCN (zpbcon, ZPBCON, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, tmp_data, ldm, anorm, rcond, pz, piz, err F77_CHAR_ARG_LEN (1))); if (err != 0) err = -2; volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else rcond = 1.0; if (err == 0) { octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); retval = ComplexMatrix (b); Complex *result = retval.fortran_vec (); F77_XFCN (zpbtrs, ZPBTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, b_nc, tmp_data, ldm, result, b_nr, err F77_CHAR_ARG_LEN (1))); if (err != 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::solve solve failed"); err = -1; } } } } if (typ == MatrixType::Banded) { // Create the storage for the banded form of the sparse matrix octave_idx_type n_upper = mattype.nupper (); octave_idx_type n_lower = mattype.nlower (); octave_idx_type ldm = n_upper + 2 * n_lower + 1; ComplexMatrix m_band (ldm, nc); Complex *tmp_data = m_band.fortran_vec (); if (! mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < ldm; j++) for (octave_idx_type i = 0; i < nc; i++) tmp_data[ii++] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) m_band(ridx(i) - j + n_lower + n_upper, j) = data(i); // Calculate the norm of the matrix, for later use. double anorm; if (calc_cond) { for (octave_idx_type j = 0; j < nr; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } Array<octave_idx_type> ipvt (dim_vector (nr, 1)); octave_idx_type *pipvt = ipvt.fortran_vec (); F77_XFCN (zgbtrf, ZGBTRF, (nr, nr, n_lower, n_upper, tmp_data, ldm, pipvt, err)); if (err != 0) { err = -2; rcond = 0.0; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision"); } else { if (calc_cond) { char job = '1'; Array<Complex> z (dim_vector (2 * nr, 1)); Complex *pz = z.fortran_vec (); Array<double> iz (dim_vector (nr, 1)); double *piz = iz.fortran_vec (); F77_XFCN (zgbcon, ZGBCON, (F77_CONST_CHAR_ARG2 (&job, 1), nc, n_lower, n_upper, tmp_data, ldm, pipvt, anorm, rcond, pz, piz, err F77_CHAR_ARG_LEN (1))); if (err != 0) err = -2; volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else rcond = 1.; if (err == 0) { char job = 'N'; octave_idx_type b_nc = b.cols (); retval = ComplexMatrix (b); Complex *result = retval.fortran_vec (); F77_XFCN (zgbtrs, ZGBTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, n_upper, b_nc, tmp_data, ldm, pipvt, result, b.rows (), err F77_CHAR_ARG_LEN (1))); } } } else if (typ != MatrixType::Banded_Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::bsolve (MatrixType &mattype, const SparseComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else { // Print spparms("spumoni") info if requested volatile int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Banded_Hermitian) { octave_idx_type n_lower = mattype.nlower (); octave_idx_type ldm = n_lower + 1; ComplexMatrix m_band (ldm, nc); Complex *tmp_data = m_band.fortran_vec (); if (! mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < ldm; j++) for (octave_idx_type i = 0; i < nc; i++) tmp_data[ii++] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) { octave_idx_type ri = ridx (i); if (ri >= j) m_band(ri - j, j) = data(i); } // Calculate the norm of the matrix, for later use. double anorm; if (calc_cond) anorm = m_band.abs().sum().row(0).max(); char job = 'L'; F77_XFCN (zpbtrf, ZPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, tmp_data, ldm, err F77_CHAR_ARG_LEN (1))); if (err != 0) { // Matrix is not positive definite!! Fall through to // unsymmetric banded solver. mattype.mark_as_unsymmetric (); typ = MatrixType::Banded; rcond = 0.0; err = 0; } else { if (calc_cond) { Array<Complex> z (dim_vector (2 * nr, 1)); Complex *pz = z.fortran_vec (); Array<double> iz (dim_vector (nr, 1)); double *piz = iz.fortran_vec (); F77_XFCN (zpbcon, ZPBCON, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, tmp_data, ldm, anorm, rcond, pz, piz, err F77_CHAR_ARG_LEN (1))); if (err != 0) err = -2; volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else rcond = 1.0; if (err == 0) { octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); OCTAVE_LOCAL_BUFFER (Complex, Bx, b_nr); // Take a first guess that the number of non-zero terms // will be as many as in b volatile octave_idx_type x_nz = b.nnz (); volatile octave_idx_type ii = 0; retval = SparseComplexMatrix (b_nr, b_nc, x_nz); retval.xcidx(0) = 0; for (volatile octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < b_nr; i++) Bx[i] = b (i,j); F77_XFCN (zpbtrs, ZPBTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, 1, tmp_data, ldm, Bx, b_nr, err F77_CHAR_ARG_LEN (1))); if (err != 0) { (*current_liboctave_error_handler) ("SparseMatrix::solve solve failed"); err = -1; break; } // Count non-zeros in work vector and adjust // space in retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nr; i++) if (Bx[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nr; i++) if (Bx[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = Bx[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); } } } if (typ == MatrixType::Banded) { // Create the storage for the banded form of the sparse matrix octave_idx_type n_upper = mattype.nupper (); octave_idx_type n_lower = mattype.nlower (); octave_idx_type ldm = n_upper + 2 * n_lower + 1; ComplexMatrix m_band (ldm, nc); Complex *tmp_data = m_band.fortran_vec (); if (! mattype.is_dense ()) { octave_idx_type ii = 0; for (octave_idx_type j = 0; j < ldm; j++) for (octave_idx_type i = 0; i < nc; i++) tmp_data[ii++] = 0.; } for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) m_band(ridx(i) - j + n_lower + n_upper, j) = data(i); // Calculate the norm of the matrix, for later use. double anorm; if (calc_cond) { for (octave_idx_type j = 0; j < nr; j++) { double atmp = 0.; for (octave_idx_type i = cidx(j); i < cidx(j+1); i++) atmp += std::abs(data(i)); if (atmp > anorm) anorm = atmp; } } Array<octave_idx_type> ipvt (dim_vector (nr, 1)); octave_idx_type *pipvt = ipvt.fortran_vec (); F77_XFCN (zgbtrf, ZGBTRF, (nr, nr, n_lower, n_upper, tmp_data, ldm, pipvt, err)); if (err != 0) { err = -2; rcond = 0.0; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision"); } else { if (calc_cond) { char job = '1'; Array<Complex> z (dim_vector (2 * nr, 1)); Complex *pz = z.fortran_vec (); Array<double> iz (dim_vector (nr, 1)); double *piz = iz.fortran_vec (); F77_XFCN (zgbcon, ZGBCON, (F77_CONST_CHAR_ARG2 (&job, 1), nc, n_lower, n_upper, tmp_data, ldm, pipvt, anorm, rcond, pz, piz, err F77_CHAR_ARG_LEN (1))); if (err != 0) err = -2; volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("matrix singular to machine precision, rcond = %g", rcond); } } else rcond = 1.; if (err == 0) { char job = 'N'; volatile octave_idx_type x_nz = b.nnz (); octave_idx_type b_nc = b.cols (); retval = SparseComplexMatrix (nr, b_nc, x_nz); retval.xcidx(0) = 0; volatile octave_idx_type ii = 0; OCTAVE_LOCAL_BUFFER (Complex, Bx, nr); for (volatile octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < nr; i++) Bx[i] = 0.; for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) Bx[b.ridx(i)] = b.data(i); F77_XFCN (zgbtrs, ZGBTRS, (F77_CONST_CHAR_ARG2 (&job, 1), nr, n_lower, n_upper, 1, tmp_data, ldm, pipvt, Bx, b.rows (), err F77_CHAR_ARG_LEN (1))); // Count non-zeros in work vector and adjust // space in retval if needed octave_idx_type new_nnz = 0; for (octave_idx_type i = 0; i < nr; i++) if (Bx[i] != 0.) new_nnz++; if (ii + new_nnz > x_nz) { // Resize the sparse matrix octave_idx_type sz = new_nnz * (b_nc - j) + x_nz; retval.change_capacity (sz); x_nz = sz; } for (octave_idx_type i = 0; i < nr; i++) if (Bx[i] != 0.) { retval.xridx(ii) = i; retval.xdata(ii++) = Bx[i]; } retval.xcidx(j+1) = ii; } retval.maybe_compress (); } } } else if (typ != MatrixType::Banded_Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } void * SparseComplexMatrix::factorize (octave_idx_type& err, double &rcond, Matrix &Control, Matrix &Info, solve_singularity_handler sing_handler, bool calc_cond) const { // The return values void *Numeric = 0; err = 0; #ifdef HAVE_UMFPACK // Setup the control parameters Control = Matrix (UMFPACK_CONTROL, 1); double *control = Control.fortran_vec (); UMFPACK_ZNAME (defaults) (control); double tmp = octave_sparse_params::get_key ("spumoni"); if (!xisnan (tmp)) Control (UMFPACK_PRL) = tmp; tmp = octave_sparse_params::get_key ("piv_tol"); if (!xisnan (tmp)) { Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; Control (UMFPACK_PIVOT_TOLERANCE) = tmp; } // Set whether we are allowed to modify Q or not tmp = octave_sparse_params::get_key ("autoamd"); if (!xisnan (tmp)) Control (UMFPACK_FIXQ) = tmp; UMFPACK_ZNAME (report_control) (control); const octave_idx_type *Ap = cidx (); const octave_idx_type *Ai = ridx (); const Complex *Ax = data (); octave_idx_type nr = rows (); octave_idx_type nc = cols (); UMFPACK_ZNAME (report_matrix) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, 1, control); void *Symbolic; Info = Matrix (1, UMFPACK_INFO); double *info = Info.fortran_vec (); int status = UMFPACK_ZNAME (qsymbolic) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, 0, &Symbolic, control, info); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::solve symbolic factorization failed"); err = -1; UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; } else { UMFPACK_ZNAME (report_symbolic) (Symbolic, control); status = UMFPACK_ZNAME (numeric) (Ap, Ai, reinterpret_cast<const double *> (Ax), 0, Symbolic, &Numeric, control, info) ; UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; if (calc_cond) rcond = Info (UMFPACK_RCOND); else rcond = 1.; volatile double rcond_plus_one = rcond + 1.0; if (status == UMFPACK_WARNING_singular_matrix || rcond_plus_one == 1.0 || xisnan (rcond)) { UMFPACK_ZNAME (report_numeric) (Numeric, control); err = -2; if (sing_handler) sing_handler (rcond); else (*current_liboctave_error_handler) ("SparseComplexMatrix::solve matrix singular to machine precision, rcond = %g", rcond); } else if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::solve numeric factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); err = -1; } else { UMFPACK_ZNAME (report_numeric) (Numeric, control); } } if (err != 0) UMFPACK_ZNAME (free_numeric) (&Numeric); #else (*current_liboctave_error_handler) ("UMFPACK not installed"); #endif return Numeric; } ComplexMatrix SparseComplexMatrix::fsolve (MatrixType &mattype, const Matrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else { // Print spparms("spumoni") info if requested volatile int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Hermitian) { #ifdef HAVE_CHOLMOD cholmod_common Common; cholmod_common *cm = &Common; // Setup initial parameters CHOLMOD_NAME(start) (cm); cm->prefer_zomplex = false; double spu = octave_sparse_params::get_key ("spumoni"); if (spu == 0.) { cm->print = -1; cm->print_function = 0; } else { cm->print = static_cast<int> (spu) + 2; cm->print_function =&SparseCholPrint; } cm->error_handler = &SparseCholError; cm->complex_divide = CHOLMOD_NAME(divcomplex); cm->hypotenuse = CHOLMOD_NAME(hypot); cm->final_ll = true; cholmod_sparse Astore; cholmod_sparse *A = &Astore; double dummy; A->nrow = nr; A->ncol = nc; A->p = cidx(); A->i = ridx(); A->nzmax = nnz(); A->packed = true; A->sorted = true; A->nz = 0; #ifdef IDX_TYPE_LONG A->itype = CHOLMOD_LONG; #else A->itype = CHOLMOD_INT; #endif A->dtype = CHOLMOD_DOUBLE; A->stype = 1; A->xtype = CHOLMOD_COMPLEX; if (nr < 1) A->x = &dummy; else A->x = data(); cholmod_dense Bstore; cholmod_dense *B = &Bstore; B->nrow = b.rows(); B->ncol = b.cols(); B->d = B->nrow; B->nzmax = B->nrow * B->ncol; B->dtype = CHOLMOD_DOUBLE; B->xtype = CHOLMOD_REAL; if (nc < 1 || b.cols() < 1) B->x = &dummy; else // We won't alter it, honest :-) B->x = const_cast<double *>(b.fortran_vec()); cholmod_factor *L; BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; L = CHOLMOD_NAME(analyze) (A, cm); CHOLMOD_NAME(factorize) (A, L, cm); if (calc_cond) rcond = CHOLMOD_NAME(rcond)(L, cm); else rcond = 1.; END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; if (rcond == 0.0) { // Either its indefinite or singular. Try UMFPACK mattype.mark_as_unsymmetric (); typ = MatrixType::Full; } else { volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", rcond); return retval; } cholmod_dense *X; BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; X = CHOLMOD_NAME(solve) (CHOLMOD_A, L, B, cm); END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; retval.resize (b.rows (), b.cols()); for (octave_idx_type j = 0; j < b.cols(); j++) { octave_idx_type jr = j * b.rows(); for (octave_idx_type i = 0; i < b.rows(); i++) retval.xelem(i,j) = static_cast<Complex *>(X->x)[jr + i]; } BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; CHOLMOD_NAME(free_dense) (&X, cm); CHOLMOD_NAME(free_factor) (&L, cm); CHOLMOD_NAME(finish) (cm); static char tmp[] = " "; CHOLMOD_NAME(print_common) (tmp, cm); END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; } #else (*current_liboctave_warning_handler) ("CHOLMOD not installed"); mattype.mark_as_unsymmetric (); typ = MatrixType::Full; #endif } if (typ == MatrixType::Full) { #ifdef HAVE_UMFPACK Matrix Control, Info; void *Numeric = factorize (err, rcond, Control, Info, sing_handler, calc_cond); if (err == 0) { octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); int status = 0; double *control = Control.fortran_vec (); double *info = Info.fortran_vec (); const octave_idx_type *Ap = cidx (); const octave_idx_type *Ai = ridx (); const Complex *Ax = data (); #ifdef UMFPACK_SEPARATE_SPLIT const double *Bx = b.fortran_vec (); OCTAVE_LOCAL_BUFFER (double, Bz, b_nr); for (octave_idx_type i = 0; i < b_nr; i++) Bz[i] = 0.; #else OCTAVE_LOCAL_BUFFER (Complex, Bz, b_nr); #endif retval.resize (b_nr, b_nc); Complex *Xx = retval.fortran_vec (); for (octave_idx_type j = 0, iidx = 0; j < b_nc; j++, iidx += b_nr) { #ifdef UMFPACK_SEPARATE_SPLIT status = UMFPACK_ZNAME (solve) (UMFPACK_A, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, reinterpret_cast<double *> (&Xx[iidx]), 0, &Bx[iidx], Bz, Numeric, control, info); #else for (octave_idx_type i = 0; i < b_nr; i++) Bz[i] = b.elem (i, j); status = UMFPACK_ZNAME (solve) (UMFPACK_A, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, reinterpret_cast<double *> (&Xx[iidx]), 0, reinterpret_cast<const double *> (Bz), 0, Numeric, control, info); #endif if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::solve solve failed"); UMFPACK_ZNAME (report_status) (control, status); err = -1; break; } } UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else mattype.mark_as_rectangular (); #else (*current_liboctave_error_handler) ("UMFPACK not installed"); #endif } else if (typ != MatrixType::Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::fsolve (MatrixType &mattype, const SparseMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else { // Print spparms("spumoni") info if requested volatile int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Hermitian) { #ifdef HAVE_CHOLMOD cholmod_common Common; cholmod_common *cm = &Common; // Setup initial parameters CHOLMOD_NAME(start) (cm); cm->prefer_zomplex = false; double spu = octave_sparse_params::get_key ("spumoni"); if (spu == 0.) { cm->print = -1; cm->print_function = 0; } else { cm->print = static_cast<int> (spu) + 2; cm->print_function =&SparseCholPrint; } cm->error_handler = &SparseCholError; cm->complex_divide = CHOLMOD_NAME(divcomplex); cm->hypotenuse = CHOLMOD_NAME(hypot); cm->final_ll = true; cholmod_sparse Astore; cholmod_sparse *A = &Astore; double dummy; A->nrow = nr; A->ncol = nc; A->p = cidx(); A->i = ridx(); A->nzmax = nnz(); A->packed = true; A->sorted = true; A->nz = 0; #ifdef IDX_TYPE_LONG A->itype = CHOLMOD_LONG; #else A->itype = CHOLMOD_INT; #endif A->dtype = CHOLMOD_DOUBLE; A->stype = 1; A->xtype = CHOLMOD_COMPLEX; if (nr < 1) A->x = &dummy; else A->x = data(); cholmod_sparse Bstore; cholmod_sparse *B = &Bstore; B->nrow = b.rows(); B->ncol = b.cols(); B->p = b.cidx(); B->i = b.ridx(); B->nzmax = b.nnz(); B->packed = true; B->sorted = true; B->nz = 0; #ifdef IDX_TYPE_LONG B->itype = CHOLMOD_LONG; #else B->itype = CHOLMOD_INT; #endif B->dtype = CHOLMOD_DOUBLE; B->stype = 0; B->xtype = CHOLMOD_REAL; if (b.rows() < 1 || b.cols() < 1) B->x = &dummy; else B->x = b.data(); cholmod_factor *L; BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; L = CHOLMOD_NAME(analyze) (A, cm); CHOLMOD_NAME(factorize) (A, L, cm); if (calc_cond) rcond = CHOLMOD_NAME(rcond)(L, cm); else rcond = 1.; END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; if (rcond == 0.0) { // Either its indefinite or singular. Try UMFPACK mattype.mark_as_unsymmetric (); typ = MatrixType::Full; } else { volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", rcond); return retval; } cholmod_sparse *X; BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; X = CHOLMOD_NAME(spsolve) (CHOLMOD_A, L, B, cm); END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; retval = SparseComplexMatrix (static_cast<octave_idx_type>(X->nrow), static_cast<octave_idx_type>(X->ncol), static_cast<octave_idx_type>(X->nzmax)); for (octave_idx_type j = 0; j <= static_cast<octave_idx_type>(X->ncol); j++) retval.xcidx(j) = static_cast<octave_idx_type *>(X->p)[j]; for (octave_idx_type j = 0; j < static_cast<octave_idx_type>(X->nzmax); j++) { retval.xridx(j) = static_cast<octave_idx_type *>(X->i)[j]; retval.xdata(j) = static_cast<Complex *>(X->x)[j]; } BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; CHOLMOD_NAME(free_sparse) (&X, cm); CHOLMOD_NAME(free_factor) (&L, cm); CHOLMOD_NAME(finish) (cm); static char tmp[] = " "; CHOLMOD_NAME(print_common) (tmp, cm); END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; } #else (*current_liboctave_warning_handler) ("CHOLMOD not installed"); mattype.mark_as_unsymmetric (); typ = MatrixType::Full; #endif } if (typ == MatrixType::Full) { #ifdef HAVE_UMFPACK Matrix Control, Info; void *Numeric = factorize (err, rcond, Control, Info, sing_handler, calc_cond); if (err == 0) { octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); int status = 0; double *control = Control.fortran_vec (); double *info = Info.fortran_vec (); const octave_idx_type *Ap = cidx (); const octave_idx_type *Ai = ridx (); const Complex *Ax = data (); #ifdef UMFPACK_SEPARATE_SPLIT OCTAVE_LOCAL_BUFFER (double, Bx, b_nr); OCTAVE_LOCAL_BUFFER (double, Bz, b_nr); for (octave_idx_type i = 0; i < b_nr; i++) Bz[i] = 0.; #else OCTAVE_LOCAL_BUFFER (Complex, Bz, b_nr); #endif // Take a first guess that the number of non-zero terms // will be as many as in b octave_idx_type x_nz = b.nnz (); octave_idx_type ii = 0; retval = SparseComplexMatrix (b_nr, b_nc, x_nz); OCTAVE_LOCAL_BUFFER (Complex, Xx, b_nr); retval.xcidx(0) = 0; for (octave_idx_type j = 0; j < b_nc; j++) { #ifdef UMFPACK_SEPARATE_SPLIT for (octave_idx_type i = 0; i < b_nr; i++) Bx[i] = b.elem (i, j); status = UMFPACK_ZNAME (solve) (UMFPACK_A, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, reinterpret_cast<double *> (Xx), 0, Bx, Bz, Numeric, control, info); #else for (octave_idx_type i = 0; i < b_nr; i++) Bz[i] = b.elem (i, j); status = UMFPACK_ZNAME (solve) (UMFPACK_A, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, reinterpret_cast<double *> (Xx), 0, reinterpret_cast<double *> (Bz), 0, Numeric, control, info); #endif if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::solve solve failed"); UMFPACK_ZNAME (report_status) (control, status); err = -1; break; } for (octave_idx_type i = 0; i < b_nr; i++) { Complex tmp = Xx[i]; if (tmp != 0.0) { if (ii == x_nz) { // Resize the sparse matrix octave_idx_type sz = x_nz * (b_nc - j) / b_nc; sz = (sz > 10 ? sz : 10) + x_nz; retval.change_capacity (sz); x_nz = sz; } retval.xdata(ii) = tmp; retval.xridx(ii++) = i; } } retval.xcidx(j+1) = ii; } retval.maybe_compress (); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else mattype.mark_as_rectangular (); #else (*current_liboctave_error_handler) ("UMFPACK not installed"); #endif } else if (typ != MatrixType::Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::fsolve (MatrixType &mattype, const ComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { ComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0)); else { // Print spparms("spumoni") info if requested volatile int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Hermitian) { #ifdef HAVE_CHOLMOD cholmod_common Common; cholmod_common *cm = &Common; // Setup initial parameters CHOLMOD_NAME(start) (cm); cm->prefer_zomplex = false; double spu = octave_sparse_params::get_key ("spumoni"); if (spu == 0.) { cm->print = -1; cm->print_function = 0; } else { cm->print = static_cast<int> (spu) + 2; cm->print_function =&SparseCholPrint; } cm->error_handler = &SparseCholError; cm->complex_divide = CHOLMOD_NAME(divcomplex); cm->hypotenuse = CHOLMOD_NAME(hypot); cm->final_ll = true; cholmod_sparse Astore; cholmod_sparse *A = &Astore; double dummy; A->nrow = nr; A->ncol = nc; A->p = cidx(); A->i = ridx(); A->nzmax = nnz(); A->packed = true; A->sorted = true; A->nz = 0; #ifdef IDX_TYPE_LONG A->itype = CHOLMOD_LONG; #else A->itype = CHOLMOD_INT; #endif A->dtype = CHOLMOD_DOUBLE; A->stype = 1; A->xtype = CHOLMOD_COMPLEX; if (nr < 1) A->x = &dummy; else A->x = data(); cholmod_dense Bstore; cholmod_dense *B = &Bstore; B->nrow = b.rows(); B->ncol = b.cols(); B->d = B->nrow; B->nzmax = B->nrow * B->ncol; B->dtype = CHOLMOD_DOUBLE; B->xtype = CHOLMOD_COMPLEX; if (nc < 1 || b.cols() < 1) B->x = &dummy; else // We won't alter it, honest :-) B->x = const_cast<Complex *>(b.fortran_vec()); cholmod_factor *L; BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; L = CHOLMOD_NAME(analyze) (A, cm); CHOLMOD_NAME(factorize) (A, L, cm); if (calc_cond) rcond = CHOLMOD_NAME(rcond)(L, cm); else rcond = 1.; END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; if (rcond == 0.0) { // Either its indefinite or singular. Try UMFPACK mattype.mark_as_unsymmetric (); typ = MatrixType::Full; } else { volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", rcond); return retval; } cholmod_dense *X; BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; X = CHOLMOD_NAME(solve) (CHOLMOD_A, L, B, cm); END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; retval.resize (b.rows (), b.cols()); for (octave_idx_type j = 0; j < b.cols(); j++) { octave_idx_type jr = j * b.rows(); for (octave_idx_type i = 0; i < b.rows(); i++) retval.xelem(i,j) = static_cast<Complex *>(X->x)[jr + i]; } BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; CHOLMOD_NAME(free_dense) (&X, cm); CHOLMOD_NAME(free_factor) (&L, cm); CHOLMOD_NAME(finish) (cm); static char tmp[] = " "; CHOLMOD_NAME(print_common) (tmp, cm); END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; } #else (*current_liboctave_warning_handler) ("CHOLMOD not installed"); mattype.mark_as_unsymmetric (); typ = MatrixType::Full; #endif } if (typ == MatrixType::Full) { #ifdef HAVE_UMFPACK Matrix Control, Info; void *Numeric = factorize (err, rcond, Control, Info, sing_handler, calc_cond); if (err == 0) { octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); int status = 0; double *control = Control.fortran_vec (); double *info = Info.fortran_vec (); const octave_idx_type *Ap = cidx (); const octave_idx_type *Ai = ridx (); const Complex *Ax = data (); const Complex *Bx = b.fortran_vec (); retval.resize (b_nr, b_nc); Complex *Xx = retval.fortran_vec (); for (octave_idx_type j = 0, iidx = 0; j < b_nc; j++, iidx += b_nr) { status = UMFPACK_ZNAME (solve) (UMFPACK_A, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, reinterpret_cast<double *> (&Xx[iidx]), 0, reinterpret_cast<const double *> (&Bx[iidx]), 0, Numeric, control, info); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::solve solve failed"); UMFPACK_ZNAME (report_status) (control, status); err = -1; break; } } UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else mattype.mark_as_rectangular (); #else (*current_liboctave_error_handler) ("UMFPACK not installed"); #endif } else if (typ != MatrixType::Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } SparseComplexMatrix SparseComplexMatrix::fsolve (MatrixType &mattype, const SparseComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool calc_cond) const { SparseComplexMatrix retval; octave_idx_type nr = rows (); octave_idx_type nc = cols (); err = 0; if (nr != nc || nr != b.rows ()) (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); else if (nr == 0 || b.cols () == 0) retval = SparseComplexMatrix (nc, b.cols ()); else { // Print spparms("spumoni") info if requested volatile int typ = mattype.type (); mattype.info (); if (typ == MatrixType::Hermitian) { #ifdef HAVE_CHOLMOD cholmod_common Common; cholmod_common *cm = &Common; // Setup initial parameters CHOLMOD_NAME(start) (cm); cm->prefer_zomplex = false; double spu = octave_sparse_params::get_key ("spumoni"); if (spu == 0.) { cm->print = -1; cm->print_function = 0; } else { cm->print = static_cast<int> (spu) + 2; cm->print_function =&SparseCholPrint; } cm->error_handler = &SparseCholError; cm->complex_divide = CHOLMOD_NAME(divcomplex); cm->hypotenuse = CHOLMOD_NAME(hypot); cm->final_ll = true; cholmod_sparse Astore; cholmod_sparse *A = &Astore; double dummy; A->nrow = nr; A->ncol = nc; A->p = cidx(); A->i = ridx(); A->nzmax = nnz(); A->packed = true; A->sorted = true; A->nz = 0; #ifdef IDX_TYPE_LONG A->itype = CHOLMOD_LONG; #else A->itype = CHOLMOD_INT; #endif A->dtype = CHOLMOD_DOUBLE; A->stype = 1; A->xtype = CHOLMOD_COMPLEX; if (nr < 1) A->x = &dummy; else A->x = data(); cholmod_sparse Bstore; cholmod_sparse *B = &Bstore; B->nrow = b.rows(); B->ncol = b.cols(); B->p = b.cidx(); B->i = b.ridx(); B->nzmax = b.nnz(); B->packed = true; B->sorted = true; B->nz = 0; #ifdef IDX_TYPE_LONG B->itype = CHOLMOD_LONG; #else B->itype = CHOLMOD_INT; #endif B->dtype = CHOLMOD_DOUBLE; B->stype = 0; B->xtype = CHOLMOD_COMPLEX; if (b.rows() < 1 || b.cols() < 1) B->x = &dummy; else B->x = b.data(); cholmod_factor *L; BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; L = CHOLMOD_NAME(analyze) (A, cm); CHOLMOD_NAME(factorize) (A, L, cm); if (calc_cond) rcond = CHOLMOD_NAME(rcond)(L, cm); else rcond = 1.; END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; if (rcond == 0.0) { // Either its indefinite or singular. Try UMFPACK mattype.mark_as_unsymmetric (); typ = MatrixType::Full; } else { volatile double rcond_plus_one = rcond + 1.0; if (rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) { sing_handler (rcond); mattype.mark_as_rectangular (); } else (*current_liboctave_error_handler) ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", rcond); return retval; } cholmod_sparse *X; BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; X = CHOLMOD_NAME(spsolve) (CHOLMOD_A, L, B, cm); END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; retval = SparseComplexMatrix (static_cast<octave_idx_type>(X->nrow), static_cast<octave_idx_type>(X->ncol), static_cast<octave_idx_type>(X->nzmax)); for (octave_idx_type j = 0; j <= static_cast<octave_idx_type>(X->ncol); j++) retval.xcidx(j) = static_cast<octave_idx_type *>(X->p)[j]; for (octave_idx_type j = 0; j < static_cast<octave_idx_type>(X->nzmax); j++) { retval.xridx(j) = static_cast<octave_idx_type *>(X->i)[j]; retval.xdata(j) = static_cast<Complex *>(X->x)[j]; } BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; CHOLMOD_NAME(free_sparse) (&X, cm); CHOLMOD_NAME(free_factor) (&L, cm); CHOLMOD_NAME(finish) (cm); static char tmp[] = " "; CHOLMOD_NAME(print_common) (tmp, cm); END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; } #else (*current_liboctave_warning_handler) ("CHOLMOD not installed"); mattype.mark_as_unsymmetric (); typ = MatrixType::Full; #endif } if (typ == MatrixType::Full) { #ifdef HAVE_UMFPACK Matrix Control, Info; void *Numeric = factorize (err, rcond, Control, Info, sing_handler, calc_cond); if (err == 0) { octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); int status = 0; double *control = Control.fortran_vec (); double *info = Info.fortran_vec (); const octave_idx_type *Ap = cidx (); const octave_idx_type *Ai = ridx (); const Complex *Ax = data (); OCTAVE_LOCAL_BUFFER (Complex, Bx, b_nr); // Take a first guess that the number of non-zero terms // will be as many as in b octave_idx_type x_nz = b.nnz (); octave_idx_type ii = 0; retval = SparseComplexMatrix (b_nr, b_nc, x_nz); OCTAVE_LOCAL_BUFFER (Complex, Xx, b_nr); retval.xcidx(0) = 0; for (octave_idx_type j = 0; j < b_nc; j++) { for (octave_idx_type i = 0; i < b_nr; i++) Bx[i] = b (i,j); status = UMFPACK_ZNAME (solve) (UMFPACK_A, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, reinterpret_cast<double *> (Xx), 0, reinterpret_cast<double *> (Bx), 0, Numeric, control, info); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexMatrix::solve solve failed"); UMFPACK_ZNAME (report_status) (control, status); err = -1; break; } for (octave_idx_type i = 0; i < b_nr; i++) { Complex tmp = Xx[i]; if (tmp != 0.0) { if (ii == x_nz) { // Resize the sparse matrix octave_idx_type sz = x_nz * (b_nc - j) / b_nc; sz = (sz > 10 ? sz : 10) + x_nz; retval.change_capacity (sz); x_nz = sz; } retval.xdata(ii) = tmp; retval.xridx(ii++) = i; } } retval.xcidx(j+1) = ii; } retval.maybe_compress (); rcond = Info (UMFPACK_RCOND); volatile double rcond_plus_one = rcond + 1.0; if (status == UMFPACK_WARNING_singular_matrix || rcond_plus_one == 1.0 || xisnan (rcond)) { err = -2; if (sing_handler) sing_handler (rcond); else (*current_liboctave_error_handler) ("SparseComplexMatrix::solve matrix singular to machine precision, rcond = %g", rcond); } UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else mattype.mark_as_rectangular (); #else (*current_liboctave_error_handler) ("UMFPACK not installed"); #endif } else if (typ != MatrixType::Hermitian) (*current_liboctave_error_handler) ("incorrect matrix type"); } return retval; } ComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const Matrix& b) const { octave_idx_type info; double rcond; return solve (mattype, b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const Matrix& b, octave_idx_type& info) const { double rcond; return solve (mattype, b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const Matrix& b, octave_idx_type& info, double& rcond) const { return solve (mattype, b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const Matrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool singular_fallback) const { ComplexMatrix retval; int typ = mattype.type (false); if (typ == MatrixType::Unknown) typ = mattype.type (*this); if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal) retval = dsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper) retval = utsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower) retval = ltsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian) retval = bsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Tridiagonal || typ == MatrixType::Tridiagonal_Hermitian) retval = trisolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Full || typ == MatrixType::Hermitian) retval = fsolve (mattype, b, err, rcond, sing_handler, true); else if (typ != MatrixType::Rectangular) { (*current_liboctave_error_handler) ("unknown matrix type"); return ComplexMatrix (); } if (singular_fallback && mattype.type(false) == MatrixType::Rectangular) { rcond = 1.; #ifdef USE_QRSOLVE retval = qrsolve (*this, b, err); #else retval = dmsolve<ComplexMatrix, SparseComplexMatrix, Matrix> (*this, b, err); #endif } return retval; } SparseComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const SparseMatrix& b) const { octave_idx_type info; double rcond; return solve (mattype, b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const SparseMatrix& b, octave_idx_type& info) const { double rcond; return solve (mattype, b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const SparseMatrix& b, octave_idx_type& info, double& rcond) const { return solve (mattype, b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const SparseMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool singular_fallback) const { SparseComplexMatrix retval; int typ = mattype.type (false); if (typ == MatrixType::Unknown) typ = mattype.type (*this); if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal) retval = dsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper) retval = utsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower) retval = ltsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian) retval = bsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Tridiagonal || typ == MatrixType::Tridiagonal_Hermitian) retval = trisolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Full || typ == MatrixType::Hermitian) retval = fsolve (mattype, b, err, rcond, sing_handler, true); else if (typ != MatrixType::Rectangular) { (*current_liboctave_error_handler) ("unknown matrix type"); return SparseComplexMatrix (); } if (singular_fallback && mattype.type(false) == MatrixType::Rectangular) { rcond = 1.; #ifdef USE_QRSOLVE retval = qrsolve (*this, b, err); #else retval = dmsolve<SparseComplexMatrix, SparseComplexMatrix, SparseMatrix> (*this, b, err); #endif } return retval; } ComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const ComplexMatrix& b) const { octave_idx_type info; double rcond; return solve (mattype, b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const ComplexMatrix& b, octave_idx_type& info) const { double rcond; return solve (mattype, b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const ComplexMatrix& b, octave_idx_type& info, double& rcond) const { return solve (mattype, b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const ComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool singular_fallback) const { ComplexMatrix retval; int typ = mattype.type (false); if (typ == MatrixType::Unknown) typ = mattype.type (*this); if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal) retval = dsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper) retval = utsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower) retval = ltsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian) retval = bsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Tridiagonal || typ == MatrixType::Tridiagonal_Hermitian) retval = trisolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Full || typ == MatrixType::Hermitian) retval = fsolve (mattype, b, err, rcond, sing_handler, true); else if (typ != MatrixType::Rectangular) { (*current_liboctave_error_handler) ("unknown matrix type"); return ComplexMatrix (); } if (singular_fallback && mattype.type(false) == MatrixType::Rectangular) { rcond = 1.; #ifdef USE_QRSOLVE retval = qrsolve (*this, b, err); #else retval = dmsolve<ComplexMatrix, SparseComplexMatrix, ComplexMatrix> (*this, b, err); #endif } return retval; } SparseComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const SparseComplexMatrix& b) const { octave_idx_type info; double rcond; return solve (mattype, b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const SparseComplexMatrix& b, octave_idx_type& info) const { double rcond; return solve (mattype, b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const SparseComplexMatrix& b, octave_idx_type& info, double& rcond) const { return solve (mattype, b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (MatrixType &mattype, const SparseComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler, bool singular_fallback) const { SparseComplexMatrix retval; int typ = mattype.type (false); if (typ == MatrixType::Unknown) typ = mattype.type (*this); if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal) retval = dsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper) retval = utsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower) retval = ltsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian) retval = bsolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Tridiagonal || typ == MatrixType::Tridiagonal_Hermitian) retval = trisolve (mattype, b, err, rcond, sing_handler, false); else if (typ == MatrixType::Full || typ == MatrixType::Hermitian) retval = fsolve (mattype, b, err, rcond, sing_handler, true); else if (typ != MatrixType::Rectangular) { (*current_liboctave_error_handler) ("unknown matrix type"); return SparseComplexMatrix (); } if (singular_fallback && mattype.type(false) == MatrixType::Rectangular) { rcond = 1.; #ifdef USE_QRSOLVE retval = qrsolve (*this, b, err); #else retval = dmsolve<SparseComplexMatrix, SparseComplexMatrix, SparseComplexMatrix> (*this, b, err); #endif } return retval; } ComplexColumnVector SparseComplexMatrix::solve (MatrixType &mattype, const ColumnVector& b) const { octave_idx_type info; double rcond; return solve (mattype, b, info, rcond); } ComplexColumnVector SparseComplexMatrix::solve (MatrixType &mattype, const ColumnVector& b, octave_idx_type& info) const { double rcond; return solve (mattype, b, info, rcond); } ComplexColumnVector SparseComplexMatrix::solve (MatrixType &mattype, const ColumnVector& b, octave_idx_type& info, double& rcond) const { return solve (mattype, b, info, rcond, 0); } ComplexColumnVector SparseComplexMatrix::solve (MatrixType &mattype, const ColumnVector& b, octave_idx_type& info, double& rcond, solve_singularity_handler sing_handler) const { Matrix tmp (b); return solve (mattype, tmp, info, rcond, sing_handler).column (static_cast<octave_idx_type> (0)); } ComplexColumnVector SparseComplexMatrix::solve (MatrixType &mattype, const ComplexColumnVector& b) const { octave_idx_type info; double rcond; return solve (mattype, b, info, rcond, 0); } ComplexColumnVector SparseComplexMatrix::solve (MatrixType &mattype, const ComplexColumnVector& b, octave_idx_type& info) const { double rcond; return solve (mattype, b, info, rcond, 0); } ComplexColumnVector SparseComplexMatrix::solve (MatrixType &mattype, const ComplexColumnVector& b, octave_idx_type& info, double& rcond) const { return solve (mattype, b, info, rcond, 0); } ComplexColumnVector SparseComplexMatrix::solve (MatrixType &mattype, const ComplexColumnVector& b, octave_idx_type& info, double& rcond, solve_singularity_handler sing_handler) const { ComplexMatrix tmp (b); return solve (mattype, tmp, info, rcond, sing_handler).column (static_cast<octave_idx_type> (0)); } ComplexMatrix SparseComplexMatrix::solve (const Matrix& b) const { octave_idx_type info; double rcond; return solve (b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (const Matrix& b, octave_idx_type& info) const { double rcond; return solve (b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (const Matrix& b, octave_idx_type& info, double& rcond) const { return solve (b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (const Matrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler) const { MatrixType mattype (*this); return solve (mattype, b, err, rcond, sing_handler); } SparseComplexMatrix SparseComplexMatrix::solve (const SparseMatrix& b) const { octave_idx_type info; double rcond; return solve (b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (const SparseMatrix& b, octave_idx_type& info) const { double rcond; return solve (b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (const SparseMatrix& b, octave_idx_type& info, double& rcond) const { return solve (b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (const SparseMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler) const { MatrixType mattype (*this); return solve (mattype, b, err, rcond, sing_handler); } ComplexMatrix SparseComplexMatrix::solve (const ComplexMatrix& b, octave_idx_type& info) const { double rcond; return solve (b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (const ComplexMatrix& b, octave_idx_type& info, double& rcond) const { return solve (b, info, rcond, 0); } ComplexMatrix SparseComplexMatrix::solve (const ComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler) const { MatrixType mattype (*this); return solve (mattype, b, err, rcond, sing_handler); } SparseComplexMatrix SparseComplexMatrix::solve (const SparseComplexMatrix& b) const { octave_idx_type info; double rcond; return solve (b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (const SparseComplexMatrix& b, octave_idx_type& info) const { double rcond; return solve (b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (const SparseComplexMatrix& b, octave_idx_type& info, double& rcond) const { return solve (b, info, rcond, 0); } SparseComplexMatrix SparseComplexMatrix::solve (const SparseComplexMatrix& b, octave_idx_type& err, double& rcond, solve_singularity_handler sing_handler) const { MatrixType mattype (*this); return solve (mattype, b, err, rcond, sing_handler); } ComplexColumnVector SparseComplexMatrix::solve (const ColumnVector& b) const { octave_idx_type info; double rcond; return solve (b, info, rcond); } ComplexColumnVector SparseComplexMatrix::solve (const ColumnVector& b, octave_idx_type& info) const { double rcond; return solve (b, info, rcond); } ComplexColumnVector SparseComplexMatrix::solve (const ColumnVector& b, octave_idx_type& info, double& rcond) const { return solve (b, info, rcond, 0); } ComplexColumnVector SparseComplexMatrix::solve (const ColumnVector& b, octave_idx_type& info, double& rcond, solve_singularity_handler sing_handler) const { Matrix tmp (b); return solve (tmp, info, rcond, sing_handler).column (static_cast<octave_idx_type> (0)); } ComplexColumnVector SparseComplexMatrix::solve (const ComplexColumnVector& b) const { octave_idx_type info; double rcond; return solve (b, info, rcond, 0); } ComplexColumnVector SparseComplexMatrix::solve (const ComplexColumnVector& b, octave_idx_type& info) const { double rcond; return solve (b, info, rcond, 0); } ComplexColumnVector SparseComplexMatrix::solve (const ComplexColumnVector& b, octave_idx_type& info, double& rcond) const { return solve (b, info, rcond, 0); } ComplexColumnVector SparseComplexMatrix::solve (const ComplexColumnVector& b, octave_idx_type& info, double& rcond, solve_singularity_handler sing_handler) const { ComplexMatrix tmp (b); return solve (tmp, info, rcond, sing_handler).column (static_cast<octave_idx_type> (0)); } // unary operations SparseBoolMatrix SparseComplexMatrix::operator ! (void) const { if (any_element_is_nan ()) gripe_nan_to_logical_conversion (); octave_idx_type nr = rows (); octave_idx_type nc = cols (); octave_idx_type nz1 = nnz (); octave_idx_type nz2 = nr*nc - nz1; SparseBoolMatrix r (nr, nc, nz2); octave_idx_type ii = 0; octave_idx_type jj = 0; r.cidx (0) = 0; for (octave_idx_type i = 0; i < nc; i++) { for (octave_idx_type j = 0; j < nr; j++) { if (jj < cidx(i+1) && ridx(jj) == j) jj++; else { r.data(ii) = true; r.ridx(ii++) = j; } } r.cidx (i+1) = ii; } return r; } SparseComplexMatrix SparseComplexMatrix::squeeze (void) const { return MSparse<Complex>::squeeze (); } SparseComplexMatrix SparseComplexMatrix::reshape (const dim_vector& new_dims) const { return MSparse<Complex>::reshape (new_dims); } SparseComplexMatrix SparseComplexMatrix::permute (const Array<octave_idx_type>& vec, bool inv) const { return MSparse<Complex>::permute (vec, inv); } SparseComplexMatrix SparseComplexMatrix::ipermute (const Array<octave_idx_type>& vec) const { return MSparse<Complex>::ipermute (vec); } // other operations bool SparseComplexMatrix::any_element_is_nan (void) const { octave_idx_type nel = nnz (); for (octave_idx_type i = 0; i < nel; i++) { Complex val = data (i); if (xisnan (val)) return true; } return false; } bool SparseComplexMatrix::any_element_is_inf_or_nan (void) const { octave_idx_type nel = nnz (); for (octave_idx_type i = 0; i < nel; i++) { Complex val = data (i); if (xisinf (val) || xisnan (val)) return true; } return false; } // Return true if no elements have imaginary components. bool SparseComplexMatrix::all_elements_are_real (void) const { return mx_inline_all_real (nnz (), data ()); } // Return nonzero if any element of CM has a non-integer real or // imaginary part. Also extract the largest and smallest (real or // imaginary) values and return them in MAX_VAL and MIN_VAL. bool SparseComplexMatrix::all_integers (double& max_val, double& min_val) const { octave_idx_type nel = nnz (); if (nel == 0) return false; max_val = std::real(data (0)); min_val = std::real(data (0)); for (octave_idx_type i = 0; i < nel; i++) { Complex val = data (i); double r_val = std::real (val); double i_val = std::imag (val); if (r_val > max_val) max_val = r_val; if (i_val > max_val) max_val = i_val; if (r_val < min_val) min_val = r_val; if (i_val < min_val) min_val = i_val; if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val) return false; } return true; } bool SparseComplexMatrix::too_large_for_float (void) const { octave_idx_type nel = nnz (); for (octave_idx_type i = 0; i < nel; i++) { Complex val = data (i); double r_val = std::real (val); double i_val = std::imag (val); if (r_val > FLT_MAX || i_val > FLT_MAX || r_val < FLT_MIN || i_val < FLT_MIN) return true; } return false; } // FIXME Do these really belong here? Maybe they should be // in a base class? SparseBoolMatrix SparseComplexMatrix::all (int dim) const { SPARSE_ALL_OP (dim); } SparseBoolMatrix SparseComplexMatrix::any (int dim) const { SPARSE_ANY_OP (dim); } SparseComplexMatrix SparseComplexMatrix::cumprod (int dim) const { SPARSE_CUMPROD (SparseComplexMatrix, Complex, cumprod); } SparseComplexMatrix SparseComplexMatrix::cumsum (int dim) const { SPARSE_CUMSUM (SparseComplexMatrix, Complex, cumsum); } SparseComplexMatrix SparseComplexMatrix::prod (int dim) const { if ((rows() == 1 && dim == -1) || dim == 1) return transpose (). prod (0). transpose(); else { SPARSE_REDUCTION_OP (SparseComplexMatrix, Complex, *=, (cidx(j+1) - cidx(j) < nr ? 0.0 : 1.0), 1.0); } } SparseComplexMatrix SparseComplexMatrix::sum (int dim) const { SPARSE_REDUCTION_OP (SparseComplexMatrix, Complex, +=, 0.0, 0.0); } SparseComplexMatrix SparseComplexMatrix::sumsq (int dim) const { #define ROW_EXPR \ Complex d = data (i); \ tmp [ridx(i)] += d * conj (d) #define COL_EXPR \ Complex d = data (i); \ tmp [j] += d * conj (d) SPARSE_BASE_REDUCTION_OP (SparseComplexMatrix, Complex, ROW_EXPR, COL_EXPR, 0.0, 0.0); #undef ROW_EXPR #undef COL_EXPR } SparseMatrix SparseComplexMatrix::abs (void) const { octave_idx_type nz = nnz (); octave_idx_type nc = cols (); SparseMatrix retval (rows(), nc, nz); for (octave_idx_type i = 0; i < nc + 1; i++) retval.cidx (i) = cidx (i); for (octave_idx_type i = 0; i < nz; i++) { retval.data (i) = std::abs (data (i)); retval.ridx (i) = ridx (i); } return retval; } SparseComplexMatrix SparseComplexMatrix::diag (octave_idx_type k) const { return MSparse<Complex>::diag (k); } std::ostream& operator << (std::ostream& os, const SparseComplexMatrix& a) { octave_idx_type nc = a.cols (); // add one to the printed indices to go from // zero-based to one-based arrays for (octave_idx_type j = 0; j < nc; j++) { octave_quit (); for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { os << a.ridx(i) + 1 << " " << j + 1 << " "; octave_write_complex (os, a.data(i)); os << "\n"; } } return os; } std::istream& operator >> (std::istream& is, SparseComplexMatrix& a) { typedef SparseComplexMatrix::element_type elt_type; return read_sparse_matrix<elt_type> (is, a, octave_read_value<Complex>); } SparseComplexMatrix operator * (const SparseComplexMatrix& m, const SparseMatrix& a) { SPARSE_SPARSE_MUL (SparseComplexMatrix, Complex, double); } SparseComplexMatrix operator * (const SparseMatrix& m, const SparseComplexMatrix& a) { SPARSE_SPARSE_MUL (SparseComplexMatrix, Complex, Complex); } SparseComplexMatrix operator * (const SparseComplexMatrix& m, const SparseComplexMatrix& a) { SPARSE_SPARSE_MUL (SparseComplexMatrix, Complex, Complex); } ComplexMatrix operator * (const ComplexMatrix& m, const SparseMatrix& a) { FULL_SPARSE_MUL (ComplexMatrix, double, Complex (0.,0.)); } ComplexMatrix operator * (const Matrix& m, const SparseComplexMatrix& a) { FULL_SPARSE_MUL (ComplexMatrix, Complex, Complex (0.,0.)); } ComplexMatrix operator * (const ComplexMatrix& m, const SparseComplexMatrix& a) { FULL_SPARSE_MUL (ComplexMatrix, Complex, Complex (0.,0.)); } ComplexMatrix mul_trans (const ComplexMatrix& m, const SparseComplexMatrix& a) { FULL_SPARSE_MUL_TRANS (ComplexMatrix, Complex, Complex (0.,0.), ); } ComplexMatrix mul_herm (const ComplexMatrix& m, const SparseComplexMatrix& a) { FULL_SPARSE_MUL_TRANS (ComplexMatrix, Complex, Complex (0.,0.), conj); } ComplexMatrix operator * (const SparseComplexMatrix& m, const Matrix& a) { SPARSE_FULL_MUL (ComplexMatrix, double, Complex (0.,0.)); } ComplexMatrix operator * (const SparseMatrix& m, const ComplexMatrix& a) { SPARSE_FULL_MUL (ComplexMatrix, Complex, Complex (0.,0.)); } ComplexMatrix operator * (const SparseComplexMatrix& m, const ComplexMatrix& a) { SPARSE_FULL_MUL (ComplexMatrix, Complex, Complex (0.,0.)); } ComplexMatrix trans_mul (const SparseComplexMatrix& m, const ComplexMatrix& a) { SPARSE_FULL_TRANS_MUL (ComplexMatrix, Complex, Complex (0.,0.), ); } ComplexMatrix herm_mul (const SparseComplexMatrix& m, const ComplexMatrix& a) { SPARSE_FULL_TRANS_MUL (ComplexMatrix, Complex, Complex (0.,0.), conj); } // diag * sparse and sparse * diag SparseComplexMatrix operator * (const DiagMatrix& d, const SparseComplexMatrix& a) { return do_mul_dm_sm<SparseComplexMatrix> (d, a); } SparseComplexMatrix operator * (const SparseComplexMatrix& a, const DiagMatrix& d) { return do_mul_sm_dm<SparseComplexMatrix> (a, d); } SparseComplexMatrix operator * (const ComplexDiagMatrix& d, const SparseMatrix& a) { return do_mul_dm_sm<SparseComplexMatrix> (d, a); } SparseComplexMatrix operator * (const SparseMatrix& a, const ComplexDiagMatrix& d) { return do_mul_sm_dm<SparseComplexMatrix> (a, d); } SparseComplexMatrix operator * (const ComplexDiagMatrix& d, const SparseComplexMatrix& a) { return do_mul_dm_sm<SparseComplexMatrix> (d, a); } SparseComplexMatrix operator * (const SparseComplexMatrix& a, const ComplexDiagMatrix& d) { return do_mul_sm_dm<SparseComplexMatrix> (a, d); } SparseComplexMatrix operator + (const ComplexDiagMatrix& d, const SparseMatrix& a) { return do_add_dm_sm<SparseComplexMatrix> (d, a); } SparseComplexMatrix operator + (const DiagMatrix& d, const SparseComplexMatrix& a) { return do_add_dm_sm<SparseComplexMatrix> (d, a); } SparseComplexMatrix operator + (const ComplexDiagMatrix& d, const SparseComplexMatrix& a) { return do_add_dm_sm<SparseComplexMatrix> (d, a); } SparseComplexMatrix operator + (const SparseMatrix& a, const ComplexDiagMatrix& d) { return do_add_sm_dm<SparseComplexMatrix> (a, d); } SparseComplexMatrix operator + (const SparseComplexMatrix& a, const DiagMatrix& d) { return do_add_sm_dm<SparseComplexMatrix> (a, d); } SparseComplexMatrix operator + (const SparseComplexMatrix&a, const ComplexDiagMatrix& d) { return do_add_sm_dm<SparseComplexMatrix> (a, d); } SparseComplexMatrix operator - (const ComplexDiagMatrix& d, const SparseMatrix& a) { return do_sub_dm_sm<SparseComplexMatrix> (d, a); } SparseComplexMatrix operator - (const DiagMatrix& d, const SparseComplexMatrix& a) { return do_sub_dm_sm<SparseComplexMatrix> (d, a); } SparseComplexMatrix operator - (const ComplexDiagMatrix& d, const SparseComplexMatrix& a) { return do_sub_dm_sm<SparseComplexMatrix> (d, a); } SparseComplexMatrix operator - (const SparseMatrix& a, const ComplexDiagMatrix& d) { return do_sub_sm_dm<SparseComplexMatrix> (a, d); } SparseComplexMatrix operator - (const SparseComplexMatrix& a, const DiagMatrix& d) { return do_sub_sm_dm<SparseComplexMatrix> (a, d); } SparseComplexMatrix operator - (const SparseComplexMatrix&a, const ComplexDiagMatrix& d) { return do_sub_sm_dm<SparseComplexMatrix> (a, d); } // perm * sparse and sparse * perm SparseComplexMatrix operator * (const PermMatrix& p, const SparseComplexMatrix& a) { return octinternal_do_mul_pm_sm (p, a); } SparseComplexMatrix operator * (const SparseComplexMatrix& a, const PermMatrix& p) { return octinternal_do_mul_sm_pm (a, p); } // FIXME -- it would be nice to share code among the min/max // functions below. #define EMPTY_RETURN_CHECK(T) \ if (nr == 0 || nc == 0) \ return T (nr, nc); SparseComplexMatrix min (const Complex& c, const SparseComplexMatrix& m) { SparseComplexMatrix result; octave_idx_type nr = m.rows (); octave_idx_type nc = m.columns (); EMPTY_RETURN_CHECK (SparseComplexMatrix); if (abs(c) == 0.) return SparseComplexMatrix (nr, nc); else { result = SparseComplexMatrix (m); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = m.cidx(j); i < m.cidx(j+1); i++) result.data(i) = xmin(c, m.data(i)); } return result; } SparseComplexMatrix min (const SparseComplexMatrix& m, const Complex& c) { return min (c, m); } SparseComplexMatrix min (const SparseComplexMatrix& a, const SparseComplexMatrix& b) { SparseComplexMatrix r; if ((a.rows() == b.rows()) && (a.cols() == b.cols())) { octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); if (a_nr == 0 || b_nc == 0 || a.nnz () == 0 || b.nnz () == 0) return SparseComplexMatrix (a_nr, a_nc); if (a_nr != b_nr || a_nc != b_nc) gripe_nonconformant ("min", a_nr, a_nc, b_nr, b_nc); else { r = SparseComplexMatrix (a_nr, a_nc, (a.nnz () + b.nnz ())); octave_idx_type jx = 0; r.cidx (0) = 0; for (octave_idx_type i = 0 ; i < a_nc ; i++) { octave_idx_type ja = a.cidx(i); octave_idx_type ja_max = a.cidx(i+1); bool ja_lt_max= ja < ja_max; octave_idx_type jb = b.cidx(i); octave_idx_type jb_max = b.cidx(i+1); bool jb_lt_max = jb < jb_max; while (ja_lt_max || jb_lt_max ) { octave_quit (); if ((! jb_lt_max) || (ja_lt_max && (a.ridx(ja) < b.ridx(jb)))) { Complex tmp = xmin (a.data(ja), 0.); if (tmp != 0.) { r.ridx(jx) = a.ridx(ja); r.data(jx) = tmp; jx++; } ja++; ja_lt_max= ja < ja_max; } else if (( !ja_lt_max ) || (jb_lt_max && (b.ridx(jb) < a.ridx(ja)) ) ) { Complex tmp = xmin (0., b.data(jb)); if (tmp != 0.) { r.ridx(jx) = b.ridx(jb); r.data(jx) = tmp; jx++; } jb++; jb_lt_max= jb < jb_max; } else { Complex tmp = xmin (a.data(ja), b.data(jb)); if (tmp != 0.) { r.data(jx) = tmp; r.ridx(jx) = a.ridx(ja); jx++; } ja++; ja_lt_max= ja < ja_max; jb++; jb_lt_max= jb < jb_max; } } r.cidx(i+1) = jx; } r.maybe_compress (); } } else (*current_liboctave_error_handler) ("matrix size mismatch"); return r; } SparseComplexMatrix max (const Complex& c, const SparseComplexMatrix& m) { SparseComplexMatrix result; octave_idx_type nr = m.rows (); octave_idx_type nc = m.columns (); EMPTY_RETURN_CHECK (SparseComplexMatrix); // Count the number of non-zero elements if (xmax(c, 0.) != 0.) { result = SparseComplexMatrix (nr, nc, c); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = m.cidx(j); i < m.cidx(j+1); i++) result.xdata(m.ridx(i) + j * nr) = xmax (c, m.data(i)); } else result = SparseComplexMatrix (m); return result; } SparseComplexMatrix max (const SparseComplexMatrix& m, const Complex& c) { return max (c, m); } SparseComplexMatrix max (const SparseComplexMatrix& a, const SparseComplexMatrix& b) { SparseComplexMatrix r; if ((a.rows() == b.rows()) && (a.cols() == b.cols())) { octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); if (a_nr == 0 || b_nc == 0) return SparseComplexMatrix (a_nr, a_nc); if (a.nnz () == 0) return SparseComplexMatrix (b); if (b.nnz () == 0) return SparseComplexMatrix (a); if (a_nr != b_nr || a_nc != b_nc) gripe_nonconformant ("min", a_nr, a_nc, b_nr, b_nc); else { r = SparseComplexMatrix (a_nr, a_nc, (a.nnz () + b.nnz ())); octave_idx_type jx = 0; r.cidx (0) = 0; for (octave_idx_type i = 0 ; i < a_nc ; i++) { octave_idx_type ja = a.cidx(i); octave_idx_type ja_max = a.cidx(i+1); bool ja_lt_max= ja < ja_max; octave_idx_type jb = b.cidx(i); octave_idx_type jb_max = b.cidx(i+1); bool jb_lt_max = jb < jb_max; while (ja_lt_max || jb_lt_max ) { octave_quit (); if ((! jb_lt_max) || (ja_lt_max && (a.ridx(ja) < b.ridx(jb)))) { Complex tmp = xmax (a.data(ja), 0.); if (tmp != 0.) { r.ridx(jx) = a.ridx(ja); r.data(jx) = tmp; jx++; } ja++; ja_lt_max= ja < ja_max; } else if (( !ja_lt_max ) || (jb_lt_max && (b.ridx(jb) < a.ridx(ja)) ) ) { Complex tmp = xmax (0., b.data(jb)); if (tmp != 0.) { r.ridx(jx) = b.ridx(jb); r.data(jx) = tmp; jx++; } jb++; jb_lt_max= jb < jb_max; } else { Complex tmp = xmax (a.data(ja), b.data(jb)); if (tmp != 0.) { r.data(jx) = tmp; r.ridx(jx) = a.ridx(ja); jx++; } ja++; ja_lt_max= ja < ja_max; jb++; jb_lt_max= jb < jb_max; } } r.cidx(i+1) = jx; } r.maybe_compress (); } } else (*current_liboctave_error_handler) ("matrix size mismatch"); return r; } SPARSE_SMS_CMP_OPS (SparseComplexMatrix, 0.0, real, Complex, 0.0, real) SPARSE_SMS_BOOL_OPS (SparseComplexMatrix, Complex, 0.0) SPARSE_SSM_CMP_OPS (Complex, 0.0, real, SparseComplexMatrix, 0.0, real) SPARSE_SSM_BOOL_OPS (Complex, SparseComplexMatrix, 0.0) SPARSE_SMSM_CMP_OPS (SparseComplexMatrix, 0.0, real, SparseComplexMatrix, 0.0, real) SPARSE_SMSM_BOOL_OPS (SparseComplexMatrix, SparseComplexMatrix, 0.0)