Mercurial > hg > octave-nkf
view libinterp/corefcn/betainc.cc @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | c41595061186 |
children |
line wrap: on
line source
/* Copyright (C) 1997-2015 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "lo-specfun.h" #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN (betainc, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} betainc (@var{x}, @var{a}, @var{b})\n\ Compute the regularized incomplete Beta function.\n\ \n\ The regularized incomplete Beta function is defined by\n\ @tex\n\ $$\n\ I (x, a, b) = {1 \\over {B (a, b)}} \\int_0^x t^{(a-z)} (1-t)^{(b-1)} dt.\n\ $$\n\ @end tex\n\ @ifnottex\n\ @c Set example in small font to prevent overfull line\n\ \n\ @smallexample\n\ @group\n\ x\n\ 1 /\n\ betainc (x, a, b) = ----------- | t^(a-1) (1-t)^(b-1) dt.\n\ beta (a, b) /\n\ t=0\n\ @end group\n\ @end smallexample\n\ \n\ @end ifnottex\n\ \n\ If @var{x} has more than one component, both @var{a} and @var{b} must be\n\ scalars. If @var{x} is a scalar, @var{a} and @var{b} must be of\n\ compatible dimensions.\n\ @seealso{betaincinv, beta, betaln}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 3) { octave_value x_arg = args(0); octave_value a_arg = args(1); octave_value b_arg = args(2); // FIXME: Can we make a template version of the duplicated code below if (x_arg.is_single_type () || a_arg.is_single_type () || b_arg.is_single_type ()) { if (x_arg.is_scalar_type ()) { float x = x_arg.float_value (); if (a_arg.is_scalar_type ()) { float a = a_arg.float_value (); if (b_arg.is_scalar_type ()) { float b = b_arg.float_value (); retval = betainc (x, a, b); } else { Array<float> b = b_arg.float_array_value (); retval = betainc (x, a, b); } } else { Array<float> a = a_arg.float_array_value (); if (b_arg.is_scalar_type ()) { float b = b_arg.float_value (); retval = betainc (x, a, b); } else { Array<float> b = b_arg.float_array_value (); retval = betainc (x, a, b); } } } else { Array<float> x = x_arg.float_array_value (); if (a_arg.is_scalar_type ()) { float a = a_arg.float_value (); if (b_arg.is_scalar_type ()) { float b = b_arg.float_value (); retval = betainc (x, a, b); } else { Array<float> b = b_arg.float_array_value (); retval = betainc (x, a, b); } } else { Array<float> a = a_arg.float_array_value (); if (b_arg.is_scalar_type ()) { float b = b_arg.float_value (); retval = betainc (x, a, b); } else { Array<float> b = b_arg.float_array_value (); retval = betainc (x, a, b); } } } } else { if (x_arg.is_scalar_type ()) { double x = x_arg.double_value (); if (a_arg.is_scalar_type ()) { double a = a_arg.double_value (); if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); retval = betainc (x, a, b); } else { Array<double> b = b_arg.array_value (); retval = betainc (x, a, b); } } else { Array<double> a = a_arg.array_value (); if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); retval = betainc (x, a, b); } else { Array<double> b = b_arg.array_value (); retval = betainc (x, a, b); } } } else { Array<double> x = x_arg.array_value (); if (a_arg.is_scalar_type ()) { double a = a_arg.double_value (); if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); retval = betainc (x, a, b); } else { Array<double> b = b_arg.array_value (); retval = betainc (x, a, b); } } else { Array<double> a = a_arg.array_value (); if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); retval = betainc (x, a, b); } else { Array<double> b = b_arg.array_value (); retval = betainc (x, a, b); } } } } } else print_usage (); return retval; } /* ## Double precision %!test %! a = [1, 1.5, 2, 3]; %! b = [4, 3, 2, 1]; %! v1 = betainc (1,a,b); %! v2 = [1,1,1,1]; %! x = [.2, .4, .6, .8]; %! v3 = betainc (x, a, b); %! v4 = 1 - betainc (1.-x, b, a); %! assert (v1, v2, sqrt (eps)); %! assert (v3, v4, sqrt (eps)); ## Single precision %!test %! a = single ([1, 1.5, 2, 3]); %! b = single ([4, 3, 2, 1]); %! v1 = betainc (1,a,b); %! v2 = single ([1,1,1,1]); %! x = single ([.2, .4, .6, .8]); %! v3 = betainc (x, a, b); %! v4 = 1 - betainc (1.-x, b, a); %! assert (v1, v2, sqrt (eps ("single"))); %! assert (v3, v4, sqrt (eps ("single"))); ## Mixed double/single precision %!test %! a = single ([1, 1.5, 2, 3]); %! b = [4, 3, 2, 1]; %! v1 = betainc (1,a,b); %! v2 = single ([1,1,1,1]); %! x = [.2, .4, .6, .8]; %! v3 = betainc (x, a, b); %! v4 = 1-betainc (1.-x, b, a); %! assert (v1, v2, sqrt (eps ("single"))); %! assert (v3, v4, sqrt (eps ("single"))); %!error betainc () %!error betainc (1) %!error betainc (1,2) %!error betainc (1,2,3,4) */ DEFUN (betaincinv, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} betaincinv (@var{y}, @var{a}, @var{b})\n\ Compute the inverse of the incomplete Beta function.\n\ \n\ The inverse is the value @var{x} such that\n\ \n\ @example\n\ @var{y} == betainc (@var{x}, @var{a}, @var{b})\n\ @end example\n\ @seealso{betainc, beta, betaln}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 3) { octave_value x_arg = args(0); octave_value a_arg = args(1); octave_value b_arg = args(2); if (x_arg.is_scalar_type ()) { double x = x_arg.double_value (); if (a_arg.is_scalar_type ()) { double a = a_arg.double_value (); if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); retval = betaincinv (x, a, b); } else { Array<double> b = b_arg.array_value (); retval = betaincinv (x, a, b); } } else { Array<double> a = a_arg.array_value (); if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); retval = betaincinv (x, a, b); } else { Array<double> b = b_arg.array_value (); retval = betaincinv (x, a, b); } } } else { Array<double> x = x_arg.array_value (); if (a_arg.is_scalar_type ()) { double a = a_arg.double_value (); if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); retval = betaincinv (x, a, b); } else { Array<double> b = b_arg.array_value (); retval = betaincinv (x, a, b); } } else { Array<double> a = a_arg.array_value (); if (b_arg.is_scalar_type ()) { double b = b_arg.double_value (); retval = betaincinv (x, a, b); } else { Array<double> b = b_arg.array_value (); retval = betaincinv (x, a, b); } } } // FIXME: It would be better to have an algorithm for betaincinv which // accepted float inputs and returned float outputs. As it is, we do // extra work to calculate betaincinv to double precision and then throw // that precision away. if (x_arg.is_single_type () || a_arg.is_single_type () || b_arg.is_single_type ()) { retval = Array<float> (retval.array_value ()); } } else print_usage (); return retval; } /* %!assert (betaincinv ([0.875 0.6875], [1 2], 3), [0.5 0.5], sqrt (eps)) %!assert (betaincinv (0.5, 3, 3), 0.5, sqrt (eps)) %!assert (betaincinv (0.34375, 4, 3), 0.5, sqrt (eps)) %!assert (betaincinv (0.2265625, 5, 3), 0.5, sqrt (eps)) %!assert (betaincinv (0.14453125, 6, 3), 0.5, sqrt (eps)) %!assert (betaincinv (0.08984375, 7, 3), 0.5, sqrt (eps)) %!assert (betaincinv (0.0546875, 8, 3), 0.5, sqrt (eps)) %!assert (betaincinv (0.03271484375, 9, 3), 0.5, sqrt (eps)) %!assert (betaincinv (0.019287109375, 10, 3), 0.5, sqrt (eps)) ## Test class single as well %!assert (betaincinv ([0.875 0.6875], [1 2], single (3)), [0.5 0.5], sqrt (eps ("single"))) %!assert (betaincinv (0.5, 3, single (3)), 0.5, sqrt (eps ("single"))) %!assert (betaincinv (0.34375, 4, single (3)), 0.5, sqrt (eps ("single"))) ## Extreme values %!assert (betaincinv (0, 42, 42), 0, sqrt (eps)) %!assert (betaincinv (1, 42, 42), 1, sqrt (eps)) %!error betaincinv () %!error betaincinv (1, 2) */