Mercurial > hg > octave-nkf
view libinterp/corefcn/conv2.cc @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | ba2b07c13913 |
children |
line wrap: on
line source
/* Copyright (C) 1999-2015 Andy Adler Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "oct-convn.h" #include "defun.h" #include "error.h" #include "oct-obj.h" #include "utils.h" enum Shape { SHAPE_FULL, SHAPE_SAME, SHAPE_VALID }; DEFUN (conv2, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} conv2 (@var{A}, @var{B})\n\ @deftypefnx {Built-in Function} {} conv2 (@var{v1}, @var{v2}, @var{m})\n\ @deftypefnx {Built-in Function} {} conv2 (@dots{}, @var{shape})\n\ Return the 2-D convolution of @var{A} and @var{B}.\n\ \n\ The size of the result is determined by the optional @var{shape} argument\n\ which takes the following values\n\ \n\ @table @asis\n\ @item @var{shape} = @qcode{\"full\"}\n\ Return the full convolution. (default)\n\ \n\ @item @var{shape} = @qcode{\"same\"}\n\ Return the central part of the convolution with the same size as @var{A}.\n\ The central part of the convolution begins at the indices\n\ @code{floor ([size(@var{B})/2] + 1)}.\n\ \n\ @item @var{shape} = @qcode{\"valid\"}\n\ Return only the parts which do not include zero-padded edges.\n\ The size of the result is @code{max (size (A) - size (B) + 1, 0)}.\n\ @end table\n\ \n\ When the third argument is a matrix, return the convolution of the matrix\n\ @var{m} by the vector @var{v1} in the column direction and by the vector\n\ @var{v2} in the row direction.\n\ @seealso{conv, convn}\n\ @end deftypefn") { octave_value retval; octave_value tmp; int nargin = args.length (); std::string shape = "full"; // default bool separable = false; convn_type ct; if (nargin < 2) { print_usage (); return retval; } else if (nargin == 3) { if (args(2).is_string ()) shape = args(2).string_value (); else separable = true; } else if (nargin >= 4) { separable = true; shape = args(3).string_value (); } if (args(0).ndims () > 2 || args(1).ndims () > 2) { error ("conv2: A and B must be 1-D vectors or 2-D matrices"); return retval; } if (shape == "full") ct = convn_full; else if (shape == "same") ct = convn_same; else if (shape == "valid") ct = convn_valid; else { error ("conv2: SHAPE type not valid"); print_usage (); return retval; } if (separable) { // If user requests separable, check first two params are vectors if (! (1 == args(0).rows () || 1 == args(0).columns ()) || ! (1 == args(1).rows () || 1 == args(1).columns ())) { print_usage (); return retval; } if (args(0).is_single_type () || args(1).is_single_type () || args(2).is_single_type ()) { if (args(0).is_complex_type () || args(1).is_complex_type () || args(2).is_complex_type ()) { FloatComplexMatrix a (args(2).float_complex_matrix_value ()); if (args(1).is_real_type () && args(2).is_real_type ()) { FloatColumnVector v1 (args(0).float_vector_value ()); FloatRowVector v2 (args(1).float_vector_value ()); retval = convn (a, v1, v2, ct); } else { FloatComplexColumnVector v1 (args(0).float_complex_vector_value ()); FloatComplexRowVector v2 (args(1).float_complex_vector_value ()); retval = convn (a, v1, v2, ct); } } else { FloatColumnVector v1 (args(0).float_vector_value ()); FloatRowVector v2 (args(1).float_vector_value ()); FloatMatrix a (args(2).float_matrix_value ()); retval = convn (a, v1, v2, ct); } } else { if (args(0).is_complex_type () || args(1).is_complex_type () || args(2).is_complex_type ()) { ComplexMatrix a (args(2).complex_matrix_value ()); if (args(1).is_real_type () && args(2).is_real_type ()) { ColumnVector v1 (args(0).vector_value ()); RowVector v2 (args(1).vector_value ()); retval = convn (a, v1, v2, ct); } else { ComplexColumnVector v1 (args(0).complex_vector_value ()); ComplexRowVector v2 (args(1).complex_vector_value ()); retval = convn (a, v1, v2, ct); } } else { ColumnVector v1 (args(0).vector_value ()); RowVector v2 (args(1).vector_value ()); Matrix a (args(2).matrix_value ()); retval = convn (a, v1, v2, ct); } } } // if (separable) else { if (args(0).is_single_type () || args(1).is_single_type ()) { if (args(0).is_complex_type () || args(1).is_complex_type ()) { FloatComplexMatrix a (args(0).float_complex_matrix_value ()); if (args(1).is_real_type ()) { FloatMatrix b (args(1).float_matrix_value ()); retval = convn (a, b, ct); } else { FloatComplexMatrix b (args(1).float_complex_matrix_value ()); retval = convn (a, b, ct); } } else { FloatMatrix a (args(0).float_matrix_value ()); FloatMatrix b (args(1).float_matrix_value ()); retval = convn (a, b, ct); } } else { if (args(0).is_complex_type () || args(1).is_complex_type ()) { ComplexMatrix a (args(0).complex_matrix_value ()); if (args(1).is_real_type ()) { Matrix b (args(1).matrix_value ()); retval = convn (a, b, ct); } else { ComplexMatrix b (args(1).complex_matrix_value ()); retval = convn (a, b, ct); } } else { Matrix a (args(0).matrix_value ()); Matrix b (args(1).matrix_value ()); retval = convn (a, b, ct); } } } // if (separable) return retval; } /* %!test %! c = [0,1,2,3;1,8,12,12;4,20,24,21;7,22,25,18]; %! assert (conv2 ([0,1;1,2], [1,2,3;4,5,6;7,8,9]), c); %!test %! c = single ([0,1,2,3;1,8,12,12;4,20,24,21;7,22,25,18]); %! assert (conv2 (single ([0,1;1,2]), single ([1,2,3;4,5,6;7,8,9])), c); %!test %! c = [1,4,4;5,18,16;14,48,40;19,62,48;15,48,36]; %! assert (conv2 (1:3, 1:2, [1,2;3,4;5,6]), c); %!assert (conv2 (1:3, 1:2, [1,2;3,4;5,6], "full"), %! conv2 (1:3, 1:2, [1,2;3,4;5,6])); %% Test shapes %!shared A, B, C %! A = rand (3, 4); %! B = rand (4); %! C = conv2 (A, B); %!assert (conv2 (A,B, "full"), C) %!assert (conv2 (A,B, "same"), C(3:5,3:6)) %!assert (conv2 (A,B, "valid"), zeros (0, 1)) %!assert (size (conv2 (B,A, "valid")), [2 1]) %!test %! B = rand (5); %! C = conv2 (A, B); %!assert (conv2 (A,B, "full"), C) %!assert (conv2 (A,B, "same"), C(3:5,3:6)) %!assert (conv2 (A,B, "valid"), zeros (0, 0)) %!assert (size (conv2 (B,A, "valid")), [3 2]) %% Clear shared variables so they are not reported for tests below %!shared %% Test cases from Bug #34893 %!assert (conv2 ([1:5;1:5], [1:2], "same"), [4 7 10 13 10; 4 7 10 13 10]) %!assert (conv2 ([1:5;1:5]', [1:2]', "same"), [4 7 10 13 10; 4 7 10 13 10]') %!assert (conv2 ([1:5;1:5], [1:2], "valid"), [4 7 10 13; 4 7 10 13]) %!assert (conv2 ([1:5;1:5]', [1:2]', "valid"), [4 7 10 13; 4 7 10 13]') %!test %! rand ("seed", 42); %! x = rand (100); %! y = ones (5); %! A = conv2 (x, y)(5:end-4,5:end-4); %! B = conv2 (x, y, "valid"); %! assert (B, A); # Yes, this test is for *exact* equivalence. %% Test input validation %!error conv2 () %!error conv2 (1) %!error <must be 1-D vectors or 2-D matrices> conv2 (ones (2), ones (2,2,2)) %!error <SHAPE type not valid> conv2 (1,2, "NOT_A_SHAPE") %% Test alternate calling form which should be 2 vectors and a matrix %!error conv2 (ones (2), 1, 1) %!error conv2 (1, ones (2), 1) */ DEFUN (convn, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{C} =} convn (@var{A}, @var{B})\n\ @deftypefnx {Built-in Function} {@var{C} =} convn (@var{A}, @var{B}, @var{shape})\n\ Return the n-D convolution of @var{A} and @var{B}.\n\ \n\ The size of the result is determined by the optional @var{shape} argument\n\ which takes the following values\n\ \n\ @table @asis\n\ @item @var{shape} = @qcode{\"full\"}\n\ Return the full convolution. (default)\n\ \n\ @item @var{shape} = @qcode{\"same\"}\n\ Return central part of the convolution with the same size as @var{A}.\n\ The central part of the convolution begins at the indices\n\ @code{floor ([size(@var{B})/2] + 1)}.\n\ \n\ @item @var{shape} = @qcode{\"valid\"}\n\ Return only the parts which do not include zero-padded edges.\n\ The size of the result is @code{max (size (A) - size (B) + 1, 0)}.\n\ @end table\n\ \n\ @seealso{conv2, conv}\n\ @end deftypefn") { octave_value retval; octave_value tmp; int nargin = args.length (); std::string shape = "full"; // default convn_type ct; if (nargin < 2 || nargin > 3) { print_usage (); return retval; } else if (nargin == 3) shape = args(2).string_value ("convn: SHAPE must be a string"); if (shape == "full") ct = convn_full; else if (shape == "same") ct = convn_same; else if (shape == "valid") ct = convn_valid; else { error ("convn: SHAPE type not valid"); print_usage (); return retval; } if (args(0).is_single_type () || args(1).is_single_type ()) { if (args(0).is_complex_type () || args(1).is_complex_type ()) { FloatComplexNDArray a (args(0).float_complex_array_value ()); if (args(1).is_real_type ()) { FloatNDArray b (args(1).float_array_value ()); retval = convn (a, b, ct); } else { FloatComplexNDArray b (args(1).float_complex_array_value ()); retval = convn (a, b, ct); } } else { FloatNDArray a (args(0).float_array_value ()); FloatNDArray b (args(1).float_array_value ()); retval = convn (a, b, ct); } } else { if (args(0).is_complex_type () || args(1).is_complex_type ()) { ComplexNDArray a (args(0).complex_array_value ()); if (args(1).is_real_type ()) { NDArray b (args(1).array_value ()); retval = convn (a, b, ct); } else { ComplexNDArray b (args(1).complex_array_value ()); retval = convn (a, b, ct); } } else { NDArray a (args(0).array_value ()); NDArray b (args(1).array_value ()); retval = convn (a, b, ct); } } return retval; } /* ## Check for bug #39314 %!test %! v = reshape ([1 2], [1 1 2]); %! assert (convn (v, v), reshape ([1 4 4], [1 1 3])); %! assert (convn (v, v, "same"), reshape ([4 4], [1 1 2])); %! assert (convn (v, v, "valid"), 4); ## The following test may look weird since we are using the output ## of convn to test itself. However, because calculations are done ## differently based on the shape option, it will help to catch some ## bugs. See also bug #39314. ## FIXME: The "valid" option uses an entirely different code path ## through C++ and Fortran to calculate inner convolution. ## The terms in the convolution added in reverse order compared ## to the "full" option. This produces differences on the order ## of tens of eps. This should be fixed, but in the meantime ## the tests will be marked as xtests. %!shared a, b, c %! ## test 3D by 3D %! a = rand (10, 10, 10); %! b = rand (3, 3, 3); %! c = convn (a, b, "full"); %!assert (convn (a, b, "same"), c(2:11,2:11,2:11)) %!xtest %! assert (convn (a, b, "valid"), c(3:10,3:10,3:10)); %! %!test %! ## test 3D by 2D %! a = rand (10, 10, 10); %! b = rand (3, 3); %! c = convn (a, b, "full"); %!assert (convn (a, b, "same"), c(2:11,2:11,:)) %!xtest %! assert (convn (a, b, "valid"), c(3:10,3:10,:)) %! %!test %! ## test 2D by 3D %! a = rand (10, 10); %! b = rand (3, 3, 3); %! c = convn (a, b, "full"); %!assert (convn (a, b, "same"), c(2:11,2:11,2)) %!assert (convn (a, b, "valid"), c(3:10,3:10,3:2)) # a 7x7x0 matrix %! %!test %! ## test multiple different number of dimensions, with odd and even numbers %! a = rand (10, 15, 7, 8, 10); %! b = rand (4, 3, 2, 3); %! c = convn (a, b, "full"); %!assert (convn (a, b, "same"), c(3:12,2:16,2:8,2:9,:)) %!xtest %! assert (convn (a, b, "valid"), c(4:10,3:15,2:7,3:8,:)) %!test %! a = reshape (floor (magic (16) /10), [4 8 4 2]); %! b = reshape (magic (6), [4 3 3]); %! c = zeros (7, 10, 6, 2); %! c(:,:,1,1) = [ %! 875 1415 1215 741 288 264 635 1109 687 171 %! 110 467 1551 1790 1891 1651 1165 900 659 568 %! 883 1047 1475 1964 2181 2302 2117 1674 579 234 %! 940 2330 3099 2573 2306 2207 2442 2918 2272 1004 %! 161 500 1564 2066 2355 2270 2099 1621 1144 831 %! 644 622 886 1121 1652 1967 1907 1668 529 228 %! 160 752 1232 768 360 284 668 1132 1380 864]; %! c(:,:,2,1) = [ %! 150 1174 1903 1971 2030 1719 1467 1420 1220 472 %! 986 2243 2603 2385 2308 2530 2971 3181 2266 768 %! 914 2443 3750 3782 3976 3821 3723 3709 2599 1178 %! 1922 3374 5198 5472 5563 5853 5794 5543 3578 1820 %! 1060 2471 3846 3724 3682 3803 3812 3927 2876 1390 %! 470 2078 3283 3225 2701 2265 2165 2261 2324 1124 %! 700 1130 1486 1515 1830 2097 2081 2028 1009 348]; %! c(:,:,3,1) = [ %! 1350 2127 2461 2082 1694 1909 2230 2621 1681 683 %! 877 2473 4362 4556 4543 4314 3879 3703 2863 1497 %! 1934 4219 5874 6117 5966 6051 5984 5714 3891 1562 %! 1927 5997 8573 8456 8517 8025 7957 8101 6121 2500 %! 1558 3533 5595 6064 6453 6491 6275 5743 3794 1832 %! 1950 2762 3455 3423 4019 4578 4807 4857 2304 907 %! 525 1860 2731 2392 1872 1724 1961 2312 2315 1141]; %! c(:,:,4,1) = [ %! 150 1317 2230 2621 2996 2767 2472 2049 1514 583 %! 1429 3056 3879 3703 3756 3964 4394 4570 3111 1250 %! 1833 4037 5984 5714 5846 5788 5883 6129 4157 2011 %! 3143 5469 7957 8101 8063 8475 8564 8439 5306 2538 %! 2001 4514 6275 5743 5391 5389 5578 6110 4473 1953 %! 817 3196 4807 4857 4229 3659 3477 3375 3208 1400 %! 750 1365 1961 2312 2840 2993 2722 2344 1092 323]; %! c(:,:,5,1) = [ %! 475 734 1296 1352 1400 1595 1557 1517 960 490 %! 751 1977 2831 2746 2607 2665 2733 2833 2186 912 %! 1065 3142 4344 4150 3768 3734 3876 4086 3366 1327 %! 976 3712 5530 5921 6158 5802 5481 5071 3821 1491 %! 1397 2996 3971 4003 4088 4180 4199 4146 2649 985 %! 1273 2121 2555 2247 2378 2624 2908 3229 1788 705 %! 365 1108 1530 1652 1550 1407 1274 1127 889 264]; %! c(:,:,6,1) = [ %! 0 133 345 683 982 1058 960 623 310 100 %! 437 806 1313 1332 1383 1391 1397 1370 864 495 %! 928 1573 2201 1928 1864 1932 2183 2445 1557 855 %! 1199 2083 2739 2573 2507 2656 2786 2928 1795 736 %! 912 1997 2404 2028 1692 1591 1803 2159 1603 599 %! 345 1092 1526 1666 1593 1437 1275 1116 863 253 %! 50 235 510 811 998 894 615 318 77 0]; %! c(:,:,1,2) = [ %! 840 1350 1176 697 293 320 674 1153 717 180 %! 142 490 1563 1824 1929 1604 1132 857 624 587 %! 890 1084 1539 1979 2238 2333 2072 1610 509 202 %! 966 2263 3034 2518 2250 2235 2512 2992 2305 1016 %! 200 561 1607 2107 2361 2277 2030 1548 1102 818 %! 652 631 922 1128 1670 1997 1895 1665 467 197 %! 160 744 1192 692 292 256 708 1208 1448 900]; %! c(:,:,2,2) = [ %! 179 1199 1886 1987 1997 1716 1479 1383 1215 485 %! 988 2213 2552 2358 2304 2615 3011 3210 2246 744 %! 921 2483 3747 3768 3960 3835 3712 3698 2588 1183 %! 1903 3416 5254 5490 5572 5826 5761 5505 3502 1814 %! 1064 2507 3825 3666 3680 3748 3821 3958 2892 1395 %! 495 2129 3277 3228 2566 2216 2154 2250 2390 1154 %! 700 1105 1472 1524 1856 2113 2059 2019 975 325]; %! c(:,:,3,2) = [ %! 1302 2104 2439 2006 1723 1931 2280 2685 1678 690 %! 877 2507 4408 4580 4523 4233 3852 3647 2850 1516 %! 1949 4238 5895 6143 6018 6063 5930 5656 3847 1538 %! 1953 5975 8547 8433 8407 8060 7955 8069 6170 2506 %! 1621 3536 5624 6117 6459 6456 6180 5666 3735 1815 %! 1904 2751 3429 3366 4122 4622 4840 4864 2242 882 %! 517 1843 2674 2337 1777 1686 2005 2367 2385 1175]; %! c(:,:,4,2) = [ %! 198 1346 2280 2685 2980 2759 2396 1982 1497 576 %! 1413 2994 3852 3647 3756 4035 4418 4595 3109 1231 %! 1873 4025 5930 5656 5792 5772 5909 6152 4185 2035 %! 3110 5510 7955 8069 8139 8456 8541 8439 5276 2541 %! 1964 4462 6180 5666 5315 5409 5631 6178 4536 1998 %! 869 3215 4840 4864 4121 3579 3420 3386 3271 1430 %! 725 1361 2005 2367 2925 3006 2667 2297 1054 325]; %! c(:,:,5,2) = [ %! 462 754 1285 1359 1441 1605 1556 1488 938 488 %! 729 1967 2788 2732 2608 2683 2744 2830 2195 912 %! 1052 3139 4302 4101 3742 3730 3895 4103 3403 1335 %! 1007 3725 5577 5964 6165 5754 5407 5006 3846 1507 %! 1375 2969 3951 3990 4144 4183 4200 4150 2661 998 %! 1258 2090 2495 2188 2403 2664 2954 3279 1814 723 %! 388 1127 1551 1673 1525 1390 1253 1139 912 275]; %! c(:,:,6,2) = [ %! 19 147 384 716 1016 1059 927 570 276 80 %! 441 791 1298 1320 1401 1396 1409 1367 865 500 %! 932 1537 2155 1870 1860 1946 2221 2487 1584 874 %! 1201 2067 2705 2538 2512 2687 2806 2971 1812 756 %! 925 1976 2363 1971 1636 1600 1844 2239 1664 626 %! 372 1133 1558 1687 1570 1401 1243 1122 883 264 %! 60 270 556 857 1024 870 569 282 66 0]; %!assert (convn(a, b, "full"), c) %!assert (convn(a, b, "same"), c(3:6,2:9,2:5,:)) %!assert (convn(a, b, "valid"), c(4,3:8,3:4,:)) ## test correct class %!assert (class (convn (rand(5), rand(3))), "double") %!assert (class (convn (rand(5, "single"), rand(3))), "single") %!assert (class (convn (rand(5), rand(3, "single"))), "single") %!assert (class (convn (true (5), rand(3))), "double") %!assert (class (convn (true (5), rand(3, "single"))), "single") %!assert (class (convn (ones(5, "uint8"), rand(3))), "double") %!assert (class (convn (rand (3, "single"), ones(5, "uint8"))), "single") %!error convn () %!error convn (1) %!error <SHAPE type not valid> convn (1,2, "NOT_A_SHAPE") %!error convn (rand (3), 1, 1) */