Mercurial > hg > octave-nkf
view libinterp/operators/op-dm-scm.cc @ 19840:c5270263d466 gui-release
close gui-release branch
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 30 Jan 2015 17:41:50 -0500 |
parents | 175b392e91fe |
children | 65554f5847ac |
line wrap: on
line source
/* Copyright (C) 2009-2013 Jason Riedy, Jaroslav Hajek This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "gripes.h" #include "oct-obj.h" #include "ov.h" #include "ov-typeinfo.h" #include "ops.h" #include "ov-re-diag.h" #include "ov-cx-diag.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "sparse-xdiv.h" // diagonal matrix by sparse matrix ops DEFBINOP (mul_dm_scm, diag_matrix, sparse_complex_matrix) { CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_complex_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.complex_value (); return octave_value (v1.diag_matrix_value () * d); } else { MatrixType typ = v2.matrix_type (); SparseComplexMatrix ret = v1.diag_matrix_value () * v2.sparse_complex_matrix_value (); octave_value out = octave_value (ret); typ.mark_as_unsymmetric (); out.matrix_type (typ); return out; } } DEFBINOP (mul_cdm_sm, complex_diag_matrix, sparse_matrix) { CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.scalar_value (); return octave_value (v1.complex_diag_matrix_value () * d); } else { MatrixType typ = v2.matrix_type (); SparseComplexMatrix ret = v1.complex_diag_matrix_value () * v2.sparse_matrix_value (); octave_value out = octave_value (ret); typ.mark_as_unsymmetric (); out.matrix_type (typ); return out; } } DEFBINOP (mul_cdm_scm, complex_diag_matrix, sparse_complex_matrix) { CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_complex_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.complex_value (); return octave_value (v1.complex_diag_matrix_value () * d); } else { MatrixType typ = v2.matrix_type (); SparseComplexMatrix ret = v1.complex_diag_matrix_value () * v2.sparse_complex_matrix_value (); octave_value out = octave_value (ret); typ.mark_as_unsymmetric (); out.matrix_type (typ); return out; } } DEFBINOP (ldiv_dm_scm, diag_matrix, sparse_complex_matrix) { CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_complex_matrix&); MatrixType typ = v2.matrix_type (); return xleftdiv (v1.diag_matrix_value (), v2.sparse_complex_matrix_value (), typ); } DEFBINOP (ldiv_cdm_sm, complex_diag_matrix, sparse_matrix) { CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_matrix&); MatrixType typ = v2.matrix_type (); return xleftdiv (v1.complex_diag_matrix_value (), v2.sparse_matrix_value (), typ); } DEFBINOP (ldiv_cdm_scm, complex_diag_matrix, sparse_complex_matrix) { CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_complex_matrix&); MatrixType typ = v2.matrix_type (); return xleftdiv (v1.complex_diag_matrix_value (), v2.sparse_complex_matrix_value (), typ); } DEFBINOP (add_dm_scm, diag_matrix, sparse_complex_matrix) { CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_complex_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.complex_value (); return octave_value (v1.matrix_value () + d); } else return v1.diag_matrix_value () + v2.sparse_complex_matrix_value (); } DEFBINOP (add_cdm_sm, complex_diag_matrix, sparse_matrix) { CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { double d = v2.scalar_value (); return octave_value (v1.complex_matrix_value () + d); } else return v1.complex_diag_matrix_value () + v2.sparse_matrix_value (); } DEFBINOP (add_cdm_scm, complex_diag_matrix, sparse_complex_matrix) { CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_complex_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.complex_value (); return octave_value (v1.complex_matrix_value () + d); } else return v1.complex_diag_matrix_value () + v2.sparse_complex_matrix_value (); } DEFBINOP (sub_dm_scm, diag_matrix, sparse_complex_matrix) { CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_complex_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.complex_value (); return octave_value (v1.matrix_value () + (-d)); } else return v1.diag_matrix_value () - v2.sparse_complex_matrix_value (); } DEFBINOP (sub_cdm_sm, complex_diag_matrix, sparse_matrix) { CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { double d = v2.scalar_value (); return octave_value (v1.complex_matrix_value () + (-d)); } else return v1.complex_diag_matrix_value () - v2.sparse_matrix_value (); } DEFBINOP (sub_cdm_scm, complex_diag_matrix, sparse_complex_matrix) { CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_complex_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.complex_value (); return octave_value (v1.complex_matrix_value () + (-d)); } else return v1.complex_diag_matrix_value () - v2.sparse_complex_matrix_value (); } // sparse matrix by diagonal matrix ops DEFBINOP (mul_scm_dm, sparse_complex_matrix, diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_diag_matrix&); if (v1.rows () == 1 && v1.columns () == 1) // If v1 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v1.complex_value (); return octave_value (d * v2.diag_matrix_value ()); } else { MatrixType typ = v1.matrix_type (); SparseComplexMatrix ret = v1.sparse_complex_matrix_value () * v2.diag_matrix_value (); octave_value out = octave_value (ret); typ.mark_as_unsymmetric (); out.matrix_type (typ); return out; } } DEFBINOP (mul_sm_cdm, sparse_matrix, complex_diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_complex_diag_matrix&); if (v1.rows () == 1 && v1.columns () == 1) // If v1 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v1.complex_value (); return octave_value (d * v2.complex_diag_matrix_value ()); } else { MatrixType typ = v1.matrix_type (); SparseComplexMatrix ret = v1.sparse_matrix_value () * v2.complex_diag_matrix_value (); octave_value out = octave_value (ret); typ.mark_as_unsymmetric (); out.matrix_type (typ); return out; } } DEFBINOP (mul_scm_cdm, sparse_complex_matrix, complex_diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_complex_diag_matrix&); if (v1.rows () == 1 && v1.columns () == 1) // If v1 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v1.complex_value (); return octave_value (d * v2.complex_diag_matrix_value ()); } else if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, don't bother with further dispatching. { std::complex<double> d = v2.complex_value (); return octave_value (v1.sparse_complex_matrix_value () * d); } else { MatrixType typ = v1.matrix_type (); SparseComplexMatrix ret = v1.sparse_complex_matrix_value () * v2.complex_diag_matrix_value (); octave_value out = octave_value (ret); typ.mark_as_unsymmetric (); out.matrix_type (typ); return out; } } DEFBINOP (div_scm_dm, sparse_complex_matrix, diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_diag_matrix&); if (v2.rows () == 1 && v2.columns () == 1) { double d = v2.scalar_value (); if (d == 0.0) gripe_divide_by_zero (); return octave_value (v1.sparse_complex_matrix_value () / d); } else { MatrixType typ = v2.matrix_type (); return xdiv (v1.sparse_complex_matrix_value (), v2.diag_matrix_value (), typ); } } DEFBINOP (div_sm_cdm, sparse_matrix, complex_diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_complex_diag_matrix&); if (v2.rows () == 1 && v2.columns () == 1) { std::complex<double> d = v2.complex_value (); if (d == 0.0) gripe_divide_by_zero (); return octave_value (v1.sparse_matrix_value () / d); } else { MatrixType typ = v2.matrix_type (); return xdiv (v1.sparse_matrix_value (), v2.complex_diag_matrix_value (), typ); } } DEFBINOP (div_scm_cdm, sparse_complex_matrix, complex_diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_complex_diag_matrix&); if (v2.rows () == 1 && v2.columns () == 1) { std::complex<double> d = v2.complex_value (); if (d == 0.0) gripe_divide_by_zero (); return octave_value (v1.sparse_complex_matrix_value () / d); } else { MatrixType typ = v2.matrix_type (); return xdiv (v1.sparse_complex_matrix_value (), v2.complex_diag_matrix_value (), typ); } } DEFBINOP (add_sm_cdm, sparse_matrix, complex_diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_complex_diag_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.complex_value (); return octave_value (v1.sparse_matrix_value () + d); } else return v1.sparse_matrix_value () + v2.complex_diag_matrix_value (); } DEFBINOP (add_scm_dm, sparse_complex_matrix, diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_diag_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { double d = v2.scalar_value (); return octave_value (v1.sparse_complex_matrix_value () + d); } else return v1.sparse_complex_matrix_value () + v2.diag_matrix_value (); } DEFBINOP (add_scm_cdm, sparse_complex_matrix, complex_diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_complex_diag_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.complex_value (); return octave_value (v1.sparse_complex_matrix_value () + d); } else return v1.sparse_complex_matrix_value () + v2.complex_diag_matrix_value (); } DEFBINOP (sub_sm_cdm, sparse_matrix, complex_diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_complex_diag_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.complex_value (); return octave_value (v1.sparse_matrix_value () + (-d)); } else return v1.sparse_matrix_value () - v2.complex_diag_matrix_value (); } DEFBINOP (sub_scm_dm, sparse_complex_matrix, diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_diag_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { double d = v2.scalar_value (); return octave_value (v1.sparse_complex_matrix_value () + (-d)); } else return v1.sparse_complex_matrix_value () - v2.diag_matrix_value (); } DEFBINOP (sub_scm_cdm, sparse_complex_matrix, complex_diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_complex_diag_matrix&); if (v2.rows () == 1 && v2.columns () == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { std::complex<double> d = v2.complex_value (); return octave_value (v1.sparse_complex_matrix_value () + (-d)); } else return v1.sparse_complex_matrix_value () - v2.complex_diag_matrix_value (); } void install_dm_scm_ops (void) { INSTALL_BINOP (op_mul, octave_diag_matrix, octave_sparse_complex_matrix, mul_dm_scm); INSTALL_BINOP (op_mul, octave_complex_diag_matrix, octave_sparse_matrix, mul_cdm_sm); INSTALL_BINOP (op_mul, octave_complex_diag_matrix, octave_sparse_complex_matrix, mul_cdm_scm); INSTALL_BINOP (op_ldiv, octave_diag_matrix, octave_sparse_complex_matrix, ldiv_dm_scm); INSTALL_BINOP (op_ldiv, octave_complex_diag_matrix, octave_sparse_matrix, ldiv_cdm_sm); INSTALL_BINOP (op_ldiv, octave_complex_diag_matrix, octave_sparse_complex_matrix, ldiv_cdm_scm); INSTALL_BINOP (op_add, octave_diag_matrix, octave_sparse_complex_matrix, add_dm_scm); INSTALL_BINOP (op_add, octave_complex_diag_matrix, octave_sparse_matrix, add_cdm_sm); INSTALL_BINOP (op_add, octave_complex_diag_matrix, octave_sparse_complex_matrix, add_cdm_scm); INSTALL_BINOP (op_sub, octave_diag_matrix, octave_sparse_complex_matrix, sub_dm_scm); INSTALL_BINOP (op_sub, octave_complex_diag_matrix, octave_sparse_matrix, sub_cdm_sm); INSTALL_BINOP (op_sub, octave_complex_diag_matrix, octave_sparse_complex_matrix, sub_cdm_scm); INSTALL_BINOP (op_mul, octave_sparse_complex_matrix, octave_diag_matrix, mul_scm_dm); INSTALL_BINOP (op_mul, octave_sparse_matrix, octave_complex_diag_matrix, mul_sm_cdm); INSTALL_BINOP (op_mul, octave_sparse_complex_matrix, octave_complex_diag_matrix, mul_scm_cdm); INSTALL_BINOP (op_div, octave_sparse_complex_matrix, octave_diag_matrix, div_scm_dm); INSTALL_BINOP (op_div, octave_sparse_matrix, octave_complex_diag_matrix, div_sm_cdm); INSTALL_BINOP (op_div, octave_sparse_complex_matrix, octave_complex_diag_matrix, div_scm_cdm); INSTALL_BINOP (op_add, octave_sparse_complex_matrix, octave_diag_matrix, add_scm_dm); INSTALL_BINOP (op_add, octave_sparse_matrix, octave_complex_diag_matrix, add_sm_cdm); INSTALL_BINOP (op_add, octave_sparse_complex_matrix, octave_complex_diag_matrix, add_scm_cdm); INSTALL_BINOP (op_sub, octave_sparse_complex_matrix, octave_diag_matrix, sub_scm_dm); INSTALL_BINOP (op_sub, octave_sparse_matrix, octave_complex_diag_matrix, sub_sm_cdm); INSTALL_BINOP (op_sub, octave_sparse_complex_matrix, octave_complex_diag_matrix, sub_scm_cdm); }