Mercurial > hg > octave-nkf
view src/sparse-xpow.cc @ 11951:9cfbc1a1bf0b release-3-0-x
this branch is no longer maintained and is closed for further development
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 22 Jan 2011 00:59:43 -0500 |
parents | a1dbe9d80eee |
children | 829e69ec3110 |
line wrap: on
line source
/* Copyright (C) 2004, 2005, 2006, 2007 David Bateman Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cassert> #include <climits> #include "Array-util.h" #include "oct-cmplx.h" #include "quit.h" #include "error.h" #include "oct-obj.h" #include "utils.h" #include "dSparse.h" #include "CSparse.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "sparse-xpow.h" static inline int xisint (double x) { return (D_NINT (x) == x && ((x >= 0 && x < INT_MAX) || (x <= 0 && x > INT_MIN))); } // Safer pow functions. Only two make sense for sparse matrices, the // others should all promote to full matrices. octave_value xpow (const SparseMatrix& a, double b) { octave_value retval; octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); if (nr == 0 || nc == 0 || nr != nc) error ("for A^b, A must be square"); else { if (static_cast<int> (b) == b) { int btmp = static_cast<int> (b); if (btmp == 0) { SparseMatrix tmp = SparseMatrix (nr, nr, nr); for (octave_idx_type i = 0; i < nr; i++) { tmp.data (i) = 1.0; tmp.ridx (i) = i; } for (octave_idx_type i = 0; i < nr + 1; i++) tmp.cidx (i) = i; retval = tmp; } else { SparseMatrix atmp; if (btmp < 0) { btmp = -btmp; octave_idx_type info; double rcond = 0.0; MatrixType mattyp (a); atmp = a.inverse (mattyp, info, rcond, 1); if (info == -1) warning ("inverse: matrix singular to machine\ precision, rcond = %g", rcond); } else atmp = a; SparseMatrix result (atmp); btmp--; while (btmp > 0) { if (btmp & 1) result = result * atmp; btmp >>= 1; if (btmp > 0) atmp = atmp * atmp; } retval = result; } } else error ("use full(a) ^ full(b)"); } return retval; } octave_value xpow (const SparseComplexMatrix& a, double b) { octave_value retval; octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); if (nr == 0 || nc == 0 || nr != nc) error ("for A^b, A must be square"); else { if (static_cast<int> (b) == b) { int btmp = static_cast<int> (b); if (btmp == 0) { SparseMatrix tmp = SparseMatrix (nr, nr, nr); for (octave_idx_type i = 0; i < nr; i++) { tmp.data (i) = 1.0; tmp.ridx (i) = i; } for (octave_idx_type i = 0; i < nr + 1; i++) tmp.cidx (i) = i; retval = tmp; } else { SparseComplexMatrix atmp; if (btmp < 0) { btmp = -btmp; octave_idx_type info; double rcond = 0.0; MatrixType mattyp (a); atmp = a.inverse (mattyp, info, rcond, 1); if (info == -1) warning ("inverse: matrix singular to machine\ precision, rcond = %g", rcond); } else atmp = a; SparseComplexMatrix result (atmp); btmp--; while (btmp > 0) { if (btmp & 1) result = result * atmp; btmp >>= 1; if (btmp > 0) atmp = atmp * atmp; } retval = result; } } else error ("use full(a) ^ full(b)"); } return retval; } // Safer pow functions that work elementwise for matrices. // // op2 \ op1: s m cs cm // +-- +---+---+----+----+ // scalar | | * | 3 | * | 9 | // +---+---+----+----+ // matrix | 1 | 4 | 7 | 10 | // +---+---+----+----+ // complex_scalar | * | 5 | * | 11 | // +---+---+----+----+ // complex_matrix | 2 | 6 | 8 | 12 | // +---+---+----+----+ // // * -> not needed. // FIXME -- these functions need to be fixed so that things // like // // a = -1; b = [ 0, 0.5, 1 ]; r = a .^ b // // and // // a = -1; b = [ 0, 0.5, 1 ]; for i = 1:3, r(i) = a .^ b(i), end // // produce identical results. Also, it would be nice if -1^0.5 // produced a pure imaginary result instead of a complex number with a // small real part. But perhaps that's really a problem with the math // library... // -*- 1 -*- octave_value elem_xpow (double a, const SparseMatrix& b) { octave_value retval; octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); double d1, d2; if (a < 0.0 && ! b.all_integers (d1, d2)) { Complex atmp (a); ComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; result (i, j) = std::pow (atmp, b(i,j)); } } retval = result; } else { Matrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; result (i, j) = std::pow (a, b(i,j)); } } retval = result; } return retval; } // -*- 2 -*- octave_value elem_xpow (double a, const SparseComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); Complex atmp (a); ComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; result (i, j) = std::pow (atmp, b(i,j)); } } return result; } // -*- 3 -*- octave_value elem_xpow (const SparseMatrix& a, double b) { // FIXME What should a .^ 0 give?? Matlab gives a // sparse matrix with same structure as a, which is strictly // incorrect. Keep compatiability. octave_value retval; octave_idx_type nz = a.nzmax (); if (b <= 0.0) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); if (static_cast<int> (b) != b && a.any_element_is_negative ()) { ComplexMatrix result (nr, nc, Complex (std::pow (0.0, b))); // FIXME -- avoid apparent GNU libm bug by // converting A and B to complex instead of just A. Complex btmp (b); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { OCTAVE_QUIT; Complex atmp (a.data (i)); result (a.ridx(i), j) = std::pow (atmp, btmp); } retval = octave_value (result); } else { Matrix result (nr, nc, (std::pow (0.0, b))); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { OCTAVE_QUIT; result (a.ridx(i), j) = std::pow (a.data (i), b); } retval = octave_value (result); } } else if (static_cast<int> (b) != b && a.any_element_is_negative ()) { SparseComplexMatrix result (a); for (octave_idx_type i = 0; i < nz; i++) { OCTAVE_QUIT; // FIXME -- avoid apparent GNU libm bug by // converting A and B to complex instead of just A. Complex atmp (a.data (i)); Complex btmp (b); result.data (i) = std::pow (atmp, btmp); } result.maybe_compress (true); retval = result; } else { SparseMatrix result (a); for (octave_idx_type i = 0; i < nz; i++) { OCTAVE_QUIT; result.data (i) = std::pow (a.data (i), b); } result.maybe_compress (true); retval = result; } return retval; } // -*- 4 -*- octave_value elem_xpow (const SparseMatrix& a, const SparseMatrix& b) { octave_value retval; octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); if (nr != b_nr || nc != b_nc) { gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc); return octave_value (); } int convert_to_complex = 0; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { if (a.data(i) < 0.0) { double btmp = b (a.ridx(i), j); if (static_cast<int> (btmp) != btmp) { convert_to_complex = 1; goto done; } } } done: // This is a dumb operator for sparse matrices anyway, and there is // no sensible way to handle the 0.^0 versus the 0.^x cases. Therefore // allocate a full matrix filled for the 0.^0 case and shrink it later // as needed if (convert_to_complex) { SparseComplexMatrix complex_result (nr, nc, Complex(1.0, 0.0)); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { OCTAVE_QUIT; complex_result.xelem(a.ridx(i), j) = std::pow (Complex(a.data(i)), Complex(b(a.ridx(i), j))); } } complex_result.maybe_compress (true); retval = complex_result; } else { SparseMatrix result (nr, nc, 1.0); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { OCTAVE_QUIT; result.xelem(a.ridx(i), j) = std::pow (a.data(i), b (a.ridx(i), j)); } } result.maybe_compress (true); retval = result; } return retval; } // -*- 5 -*- octave_value elem_xpow (const SparseMatrix& a, const Complex& b) { octave_value retval; if (b == 0.0) // Can this case ever happen, due to automatic retyping with maybe_mutate? retval = octave_value (NDArray (a.dims (), 1)); else { octave_idx_type nz = a.nzmax (); SparseComplexMatrix result (a); for (octave_idx_type i = 0; i < nz; i++) { OCTAVE_QUIT; result.data (i) = std::pow (Complex (a.data (i)), b); } result.maybe_compress (true); retval = result; } return retval; } // -*- 6 -*- octave_value elem_xpow (const SparseMatrix& a, const SparseComplexMatrix& b) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); if (nr != b_nr || nc != b_nc) { gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc); return octave_value (); } SparseComplexMatrix result (nr, nc, Complex(1.0, 0.0)); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { OCTAVE_QUIT; result.xelem(a.ridx(i), j) = std::pow (a.data(i), b (a.ridx(i), j)); } } result.maybe_compress (true); return result; } // -*- 7 -*- octave_value elem_xpow (const Complex& a, const SparseMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); ComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; double btmp = b (i, j); if (xisint (btmp)) result (i, j) = std::pow (a, static_cast<int> (btmp)); else result (i, j) = std::pow (a, btmp); } } return result; } // -*- 8 -*- octave_value elem_xpow (const Complex& a, const SparseComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); ComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; result (i, j) = std::pow (a, b (i, j)); } return result; } // -*- 9 -*- octave_value elem_xpow (const SparseComplexMatrix& a, double b) { octave_value retval; if (b <= 0) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); ComplexMatrix result (nr, nc, Complex (std::pow (0.0, b))); if (xisint (b)) { for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { OCTAVE_QUIT; result (a.ridx(i), j) = std::pow (a.data (i), static_cast<int> (b)); } } else { for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { OCTAVE_QUIT; result (a.ridx(i), j) = std::pow (a.data (i), b); } } retval = result; } else { octave_idx_type nz = a.nzmax (); SparseComplexMatrix result (a); if (xisint (b)) { for (octave_idx_type i = 0; i < nz; i++) { OCTAVE_QUIT; result.data (i) = std::pow (a.data (i), static_cast<int> (b)); } } else { for (octave_idx_type i = 0; i < nz; i++) { OCTAVE_QUIT; result.data (i) = std::pow (a.data (i), b); } } result.maybe_compress (true); retval = result; } return retval; } // -*- 10 -*- octave_value elem_xpow (const SparseComplexMatrix& a, const SparseMatrix& b) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); if (nr != b_nr || nc != b_nc) { gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc); return octave_value (); } SparseComplexMatrix result (nr, nc, Complex(1.0, 0.0)); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { OCTAVE_QUIT; double btmp = b (a.ridx(i), j); Complex tmp; if (xisint (btmp)) result.xelem(a.ridx(i), j) = std::pow (a.data (i), static_cast<int> (btmp)); else result.xelem(a.ridx(i), j) = std::pow (a.data (i), btmp); } } result.maybe_compress (true); return result; } // -*- 11 -*- octave_value elem_xpow (const SparseComplexMatrix& a, const Complex& b) { octave_value retval; if (b == 0.0) // Can this case ever happen, due to automatic retyping with maybe_mutate? retval = octave_value (NDArray (a.dims (), 1)); else { octave_idx_type nz = a.nzmax (); SparseComplexMatrix result (a); for (octave_idx_type i = 0; i < nz; i++) { OCTAVE_QUIT; result.data (i) = std::pow (a.data (i), b); } result.maybe_compress (true); retval = result; } return retval; } // -*- 12 -*- octave_value elem_xpow (const SparseComplexMatrix& a, const SparseComplexMatrix& b) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); if (nr != b_nr || nc != b_nc) { gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc); return octave_value (); } SparseComplexMatrix result (nr, nc, Complex(1.0, 0.0)); for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = a.cidx(j); i < a.cidx(j+1); i++) { OCTAVE_QUIT; result.xelem(a.ridx(i), j) = std::pow (a.data (i), b (a.ridx(i), j)); } } result.maybe_compress (true); return result; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */