Mercurial > hg > octave-nkf
view src/ov-cx-sparse.cc @ 12121:87237a866c71 release-3-2-x
this branch is no longer maintained and is closed for further development
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 22 Jan 2011 01:00:54 -0500 |
parents | eb63fbe60fab |
children | c6edba80dfae |
line wrap: on
line source
/* Copyright (C) 2004, 2005, 2006, 2007, 2008 David Bateman Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <climits> #include <iostream> #include <vector> #include "lo-specfun.h" #include "lo-mappers.h" #include "oct-locbuf.h" #include "ov-base.h" #include "ov-scalar.h" #include "ov-complex.h" #include "gripes.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "ov-base-sparse.h" #include "ov-base-sparse.cc" #include "ov-bool-sparse.h" template class OCTINTERP_API octave_base_sparse<SparseComplexMatrix>; DEFINE_OCTAVE_ALLOCATOR (octave_sparse_complex_matrix); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_sparse_complex_matrix, "sparse complex matrix", "double"); octave_base_value * octave_sparse_complex_matrix::try_narrowing_conversion (void) { octave_base_value *retval = 0; if (Vsparse_auto_mutate) { int nr = matrix.rows (); int nc = matrix.cols (); // Don't use numel, since it can overflow for very large matrices // Note that for the tests on matrix size, they become approximative // since they involves a cast to double to avoid issues of overflow if (matrix.rows () == 1 && matrix.cols () == 1) { // Const copy of the matrix, so the right version of () operator used const SparseComplexMatrix tmp (matrix); Complex c = tmp (0, 0); if (std::imag (c) == 0.0) retval = new octave_scalar (std::real (c)); else retval = new octave_complex (c); } else if (nr == 0 || nc == 0) retval = new octave_matrix (Matrix (nr, nc)); else if (matrix.all_elements_are_real ()) if (matrix.cols () > 0 && matrix.rows () > 0 && double (matrix.byte_size ()) > double (matrix.rows ()) * double (matrix.cols ()) * sizeof (double)) retval = new octave_matrix (::real (matrix.matrix_value ())); else retval = new octave_sparse_matrix (::real (matrix)); else if (matrix.cols () > 0 && matrix.rows () > 0 && double (matrix.byte_size ()) > double (matrix.rows ()) * double (matrix.cols ()) * sizeof (Complex)) retval = new octave_complex_matrix (matrix.matrix_value ()); } else { if (matrix.all_elements_are_real ()) retval = new octave_sparse_matrix (::real (matrix)); } return retval; } void octave_sparse_complex_matrix::assign (const octave_value_list& idx, const SparseComplexMatrix& rhs) { octave_base_sparse<SparseComplexMatrix>::assign (idx, rhs); } void octave_sparse_complex_matrix::assign (const octave_value_list& idx, const SparseMatrix& rhs) { int len = idx.length (); for (int i = 0; i < len; i++) matrix.set_index (idx(i).index_vector ()); ::assign (matrix, rhs); } double octave_sparse_complex_matrix::double_value (bool force_conversion) const { double retval = lo_ieee_nan_value (); if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex sparse matrix", "real scalar"); // FIXME -- maybe this should be a function, valid_as_scalar() if (numel () > 0) { if (numel () > 1) gripe_implicit_conversion ("Octave:array-as-scalar", "complex sparse matrix", "real scalar"); retval = std::real (matrix (0, 0)); } else gripe_invalid_conversion ("complex sparse matrix", "real scalar"); return retval; } Matrix octave_sparse_complex_matrix::matrix_value (bool force_conversion) const { Matrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex sparse matrix", "real matrix"); retval = ::real (matrix.matrix_value ()); return retval; } Complex octave_sparse_complex_matrix::complex_value (bool) const { double tmp = lo_ieee_nan_value (); Complex retval (tmp, tmp); // FIXME -- maybe this should be a function, valid_as_scalar() if (numel () > 0) { if (numel () > 1) gripe_implicit_conversion ("Octave:array-as-scalar", "complex sparse matrix", "real scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("complex sparse matrix", "real scalar"); return retval; } ComplexMatrix octave_sparse_complex_matrix::complex_matrix_value (bool) const { return matrix.matrix_value (); } ComplexNDArray octave_sparse_complex_matrix::complex_array_value (bool) const { return ComplexNDArray (matrix.matrix_value ()); } charNDArray octave_sparse_complex_matrix::char_array_value (bool frc_str_conv) const { charNDArray retval; if (! frc_str_conv) gripe_implicit_conversion ("Octave:num-to-str", "sparse complex matrix", "string"); else { retval = charNDArray (dims (), 0); octave_idx_type nc = matrix.cols (); octave_idx_type nr = matrix.rows (); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = matrix.cidx(j); i < matrix.cidx(j+1); i++) retval(matrix.ridx(i) + nr * j) = static_cast<char>(std::real (matrix.data (i))); } return retval; } SparseMatrix octave_sparse_complex_matrix::sparse_matrix_value (bool force_conversion) const { SparseMatrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex sparse matrix", "real sparse matrix"); retval = ::real (matrix); return retval; } bool octave_sparse_complex_matrix::save_binary (std::ostream& os, bool&save_as_floats) { dim_vector d = this->dims (); if (d.length() < 1) return false; // Ensure that additional memory is deallocated matrix.maybe_compress (); int nr = d(0); int nc = d(1); int nz = nzmax (); int32_t itmp; // Use negative value for ndims to be consistent with other formats itmp= -2; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nr; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nc; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nz; os.write (reinterpret_cast<char *> (&itmp), 4); save_type st = LS_DOUBLE; if (save_as_floats) { if (matrix.too_large_for_float ()) { warning ("save: some values too large to save as floats --"); warning ("save: saving as doubles instead"); } else st = LS_FLOAT; } else if (matrix.nzmax () > 8192) // FIXME -- make this configurable. { double max_val, min_val; if (matrix.all_integers (max_val, min_val)) st = get_save_type (max_val, min_val); } // add one to the printed indices to go from // zero-based to one-based arrays for (int i = 0; i < nc+1; i++) { OCTAVE_QUIT; itmp = matrix.cidx(i); os.write (reinterpret_cast<char *> (&itmp), 4); } for (int i = 0; i < nz; i++) { OCTAVE_QUIT; itmp = matrix.ridx(i); os.write (reinterpret_cast<char *> (&itmp), 4); } write_doubles (os, reinterpret_cast<const double *> (matrix.data()), st, 2 * nz); return true; } bool octave_sparse_complex_matrix::load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt) { int32_t nz, nc, nr, tmp; char ctmp; if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); if (tmp != -2) { error("load: only 2D sparse matrices are supported"); return false; } if (! is.read (reinterpret_cast<char *> (&nr), 4)) return false; if (! is.read (reinterpret_cast<char *> (&nc), 4)) return false; if (! is.read (reinterpret_cast<char *> (&nz), 4)) return false; if (swap) { swap_bytes<4> (&nr); swap_bytes<4> (&nc); swap_bytes<4> (&nz); } SparseComplexMatrix m (static_cast<octave_idx_type> (nr), static_cast<octave_idx_type> (nc), static_cast<octave_idx_type> (nz)); for (int i = 0; i < nc+1; i++) { OCTAVE_QUIT; if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); m.cidx(i) = tmp; } for (int i = 0; i < nz; i++) { OCTAVE_QUIT; if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); m.ridx(i) = tmp; } if (! is.read (reinterpret_cast<char *> (&ctmp), 1)) return false; read_doubles (is, reinterpret_cast<double *> (m.data ()), static_cast<save_type> (ctmp), 2 * nz, swap, fmt); if (error_state || ! is) return false; matrix = m; return true; } #if defined (HAVE_HDF5) bool octave_sparse_complex_matrix::save_hdf5 (hid_t loc_id, const char *name, bool save_as_floats) { dim_vector dv = dims (); int empty = save_hdf5_empty (loc_id, name, dv); if (empty) return (empty > 0); // Ensure that additional memory is deallocated matrix.maybe_compress (); hid_t group_hid = H5Gcreate (loc_id, name, 0); if (group_hid < 0) return false; hid_t space_hid = -1, data_hid = -1; bool retval = true; SparseComplexMatrix m = sparse_complex_matrix_value (); octave_idx_type tmp; hsize_t hdims[2]; space_hid = H5Screate_simple (0, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "nr", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.rows (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "nc", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.cols (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "nz", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.nzmax (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); hdims[0] = m.cols() + 1; hdims[1] = 1; space_hid = H5Screate_simple (2, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "cidx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } octave_idx_type * itmp = m.xcidx (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); hdims[0] = m.nzmax (); hdims[1] = 1; space_hid = H5Screate_simple (2, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "ridx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } itmp = m.xridx (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } hid_t save_type_hid = H5T_NATIVE_DOUBLE; if (save_as_floats) { if (m.too_large_for_float ()) { warning ("save: some values too large to save as floats --"); warning ("save: saving as doubles instead"); } else save_type_hid = H5T_NATIVE_FLOAT; } #if HAVE_HDF5_INT2FLOAT_CONVERSIONS // hdf5 currently doesn't support float/integer conversions else { double max_val, min_val; if (m.all_integers (max_val, min_val)) save_type_hid = save_type_to_hdf5 (get_save_type (max_val, min_val)); } #endif /* HAVE_HDF5_INT2FLOAT_CONVERSIONS */ hid_t type_hid = hdf5_make_complex_type (save_type_hid); if (type_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "data", type_hid, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Tclose (type_hid); H5Gclose (group_hid); return false; } hid_t complex_type_hid = hdf5_make_complex_type (H5T_NATIVE_DOUBLE); retval = false; if (complex_type_hid >= 0) { Complex * ctmp = m.xdata (); retval = H5Dwrite (data_hid, complex_type_hid, H5S_ALL, H5S_ALL, H5P_DEFAULT, ctmp) >= 0; } H5Dclose (data_hid); H5Sclose (space_hid); H5Tclose (type_hid); H5Gclose (group_hid); return retval; } bool octave_sparse_complex_matrix::load_hdf5 (hid_t loc_id, const char *name, bool /* have_h5giterate_bug */) { octave_idx_type nr, nc, nz; hid_t group_hid, data_hid, space_hid; hsize_t rank; dim_vector dv; int empty = load_hdf5_empty (loc_id, name, dv); if (empty > 0) matrix.resize(dv); if (empty) return (empty > 0); group_hid = H5Gopen (loc_id, name); if (group_hid < 0 ) return false; data_hid = H5Dopen (group_hid, "nr"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nr) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); data_hid = H5Dopen (group_hid, "nc"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nc) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); data_hid = H5Dopen (group_hid, "nz"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nz) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); SparseComplexMatrix m (static_cast<octave_idx_type> (nr), static_cast<octave_idx_type> (nc), static_cast<octave_idx_type> (nz)); data_hid = H5Dopen (group_hid, "cidx"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank); H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nc + 1 || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } octave_idx_type *itmp = m.xcidx (); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); data_hid = H5Dopen (group_hid, "ridx"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nz || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } itmp = m.xridx (); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); data_hid = H5Dopen (group_hid, "data"); hid_t type_hid = H5Dget_type (data_hid); hid_t complex_type = hdf5_make_complex_type (H5T_NATIVE_DOUBLE); if (! hdf5_types_compatible (type_hid, complex_type)) { H5Tclose (complex_type); H5Dclose (data_hid); H5Gclose (group_hid); return false; } space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nz || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } Complex *ctmp = m.xdata (); bool retval = false; if (H5Dread (data_hid, complex_type, H5S_ALL, H5S_ALL, H5P_DEFAULT, ctmp) >= 0) { retval = true; matrix = m; } H5Tclose (complex_type); H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return retval; } #endif mxArray * octave_sparse_complex_matrix::as_mxArray (void) const { mwSize nz = nzmax (); mxArray *retval = new mxArray (mxDOUBLE_CLASS, rows (), columns (), nz, mxCOMPLEX); double *pr = static_cast<double *> (retval->get_data ()); double *pi = static_cast<double *> (retval->get_imag_data ()); mwIndex *ir = retval->get_ir (); mwIndex *jc = retval->get_jc (); for (mwIndex i = 0; i < nz; i++) { Complex val = matrix.data(i); pr[i] = std::real (val); pi[i] = std::imag (val); ir[i] = matrix.ridx(i); } for (mwIndex i = 0; i < columns() + 1; i++) jc[i] = matrix.cidx(i); return retval; } static double xabs (const Complex& x) { return (xisinf (x.real ()) || xisinf (x.imag ())) ? octave_Inf : abs (x); } static double ximag (const Complex& x) { return x.imag (); } static double xreal (const Complex& x) { return x.real (); } static bool any_element_less_than (const SparseMatrix& a, double val) { octave_idx_type len = a.nnz (); if (val > 0. && len != a.numel ()) return true; for (octave_idx_type i = 0; i < len; i++) { OCTAVE_QUIT; if (a.data(i) < val) return true; } return false; } static bool any_element_greater_than (const SparseMatrix& a, double val) { octave_idx_type len = a.nnz (); if (val < 0. && len != a.numel ()) return true; for (octave_idx_type i = 0; i < len; i++) { OCTAVE_QUIT; if (a.data(i) > val) return true; } return false; } #define SPARSE_MAPPER(MAP, AMAP, FCN) \ octave_value \ octave_sparse_complex_matrix::MAP (void) const \ { \ static AMAP cmap = FCN; \ return matrix.map (cmap); \ } #define DSPARSE_MAPPER(MAP, AMAP, FCN) \ octave_value \ octave_sparse_complex_matrix::MAP (void) const \ { \ static SparseComplexMatrix::dmapper dmap = ximag; \ SparseMatrix m = matrix.map (dmap); \ if (m.all_elements_are_zero ()) \ { \ dmap = xreal; \ m = matrix.map (dmap); \ static AMAP cmap = FCN; \ return m.map (cmap); \ } \ else \ { \ error ("%s: not defined for complex arguments", #MAP); \ return octave_value (); \ } \ } #define CD_SPARSE_MAPPER(MAP, RFCN, CFCN, L1, L2) \ octave_value \ octave_sparse_complex_matrix::MAP (void) const \ { \ static SparseComplexMatrix::dmapper idmap = ximag; \ SparseMatrix m = matrix.map (idmap); \ if (m.all_elements_are_zero ()) \ { \ static SparseComplexMatrix::dmapper rdmap = xreal; \ m = matrix.map (rdmap); \ static SparseMatrix::dmapper dmap = RFCN; \ static SparseMatrix::cmapper cmap = CFCN; \ return (any_element_less_than (m, L1) \ ? octave_value (m.map (cmap)) \ : (any_element_greater_than (m, L2) \ ? octave_value (m.map (cmap)) \ : octave_value (m.map (dmap)))); \ } \ else \ { \ error ("%s: not defined for complex arguments", #MAP); \ return octave_value (); \ } \ } DSPARSE_MAPPER (erf, SparseMatrix::dmapper, ::erf) DSPARSE_MAPPER (erfc, SparseMatrix::dmapper, ::erfc) DSPARSE_MAPPER (gamma, SparseMatrix::dmapper, xgamma) CD_SPARSE_MAPPER (lgamma, xlgamma, xlgamma, 0.0, octave_Inf) SPARSE_MAPPER (abs, SparseComplexMatrix::dmapper, xabs) SPARSE_MAPPER (acos, SparseComplexMatrix::cmapper, ::acos) SPARSE_MAPPER (acosh, SparseComplexMatrix::cmapper, ::acosh) SPARSE_MAPPER (angle, SparseComplexMatrix::dmapper, std::arg) SPARSE_MAPPER (arg, SparseComplexMatrix::dmapper, std::arg) SPARSE_MAPPER (asin, SparseComplexMatrix::cmapper, ::asin) SPARSE_MAPPER (asinh, SparseComplexMatrix::cmapper, ::asinh) SPARSE_MAPPER (atan, SparseComplexMatrix::cmapper, ::atan) SPARSE_MAPPER (atanh, SparseComplexMatrix::cmapper, ::atanh) SPARSE_MAPPER (ceil, SparseComplexMatrix::cmapper, ::ceil) SPARSE_MAPPER (conj, SparseComplexMatrix::cmapper, std::conj) SPARSE_MAPPER (cos, SparseComplexMatrix::cmapper, std::cos) SPARSE_MAPPER (cosh, SparseComplexMatrix::cmapper, std::cosh) SPARSE_MAPPER (exp, SparseComplexMatrix::cmapper, std::exp) SPARSE_MAPPER (expm1, SparseComplexMatrix::cmapper, ::expm1) SPARSE_MAPPER (fix, SparseComplexMatrix::cmapper, ::fix) SPARSE_MAPPER (floor, SparseComplexMatrix::cmapper, ::floor) SPARSE_MAPPER (imag, SparseComplexMatrix::dmapper, ximag) SPARSE_MAPPER (log, SparseComplexMatrix::cmapper, std::log) SPARSE_MAPPER (log2, SparseComplexMatrix::cmapper, xlog2) SPARSE_MAPPER (log10, SparseComplexMatrix::cmapper, std::log10) SPARSE_MAPPER (log1p, SparseComplexMatrix::cmapper, ::log1p) SPARSE_MAPPER (real, SparseComplexMatrix::dmapper, xreal) SPARSE_MAPPER (round, SparseComplexMatrix::cmapper, xround) SPARSE_MAPPER (roundb, SparseComplexMatrix::cmapper, xroundb) SPARSE_MAPPER (signum, SparseComplexMatrix::cmapper, ::signum) SPARSE_MAPPER (sin, SparseComplexMatrix::cmapper, std::sin) SPARSE_MAPPER (sinh, SparseComplexMatrix::cmapper, std::sinh) SPARSE_MAPPER (sqrt, SparseComplexMatrix::cmapper, std::sqrt) SPARSE_MAPPER (tan, SparseComplexMatrix::cmapper, std::tan) SPARSE_MAPPER (tanh, SparseComplexMatrix::cmapper, std::tanh) SPARSE_MAPPER (finite, SparseComplexMatrix::bmapper, xfinite) SPARSE_MAPPER (isinf, SparseComplexMatrix::bmapper, xisinf) SPARSE_MAPPER (isna, SparseComplexMatrix::bmapper, octave_is_NA) SPARSE_MAPPER (isnan, SparseComplexMatrix::bmapper, xisnan) /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */