Mercurial > hg > octave-nkf
view src/ov-re-sparse.cc @ 12121:87237a866c71 release-3-2-x
this branch is no longer maintained and is closed for further development
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 22 Jan 2011 01:00:54 -0500 |
parents | 3df527f71cee |
children |
line wrap: on
line source
/* Copyright (C) 2004, 2005, 2006, 2007, 2008 David Bateman Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <climits> #include <iostream> #include <vector> #include "lo-specfun.h" #include "lo-mappers.h" #include "oct-locbuf.h" #include "ov-base.h" #include "ov-scalar.h" #include "gripes.h" #include "ls-hdf5.h" #include "ov-re-sparse.h" #include "ov-base-sparse.h" #include "ov-base-sparse.cc" #include "ov-bool-sparse.h" template class OCTINTERP_API octave_base_sparse<SparseMatrix>; DEFINE_OCTAVE_ALLOCATOR (octave_sparse_matrix); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_sparse_matrix, "sparse matrix", "double"); idx_vector octave_sparse_matrix::index_vector (void) const { if (matrix.numel () == matrix.nnz ()) return idx_vector (array_value ()); else { std::string nm = type_name (); error ("%s type invalid as index value", nm.c_str ()); return idx_vector (); } } octave_base_value * octave_sparse_matrix::try_narrowing_conversion (void) { octave_base_value *retval = 0; if (Vsparse_auto_mutate) { // Don't use numel, since it can overflow for very large matrices // Note that for the second test, this means it becomes approximative // since it involves a cast to double to avoid issues of overflow if (matrix.rows () == 1 && matrix.cols () == 1) { // Const copy of the matrix, so the right version of () operator used const SparseMatrix tmp (matrix); retval = new octave_scalar (tmp (0)); } else if (matrix.cols () > 0 && matrix.rows () > 0 && double (matrix.byte_size ()) > double (matrix.rows ()) * double (matrix.cols ()) * sizeof (double)) retval = new octave_matrix (matrix.matrix_value ()); } return retval; } double octave_sparse_matrix::double_value (bool) const { double retval = lo_ieee_nan_value (); if (numel () > 0) { if (numel () > 1) gripe_implicit_conversion ("Octave:array-as-scalar", "real sparse matrix", "real scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("real sparse matrix", "real scalar"); return retval; } Complex octave_sparse_matrix::complex_value (bool) const { double tmp = lo_ieee_nan_value (); Complex retval (tmp, tmp); // FIXME -- maybe this should be a function, valid_as_scalar() if (rows () > 0 && columns () > 0) { if (numel () > 1) gripe_implicit_conversion ("Octave:array-as-scalar", "real sparse matrix", "complex scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("real sparse matrix", "complex scalar"); return retval; } Matrix octave_sparse_matrix::matrix_value (bool) const { return matrix.matrix_value (); } boolNDArray octave_sparse_matrix::bool_array_value (bool warn) const { NDArray m = matrix.matrix_value (); if (m.any_element_is_nan ()) error ("invalid conversion from NaN to logical"); else if (warn && m.any_element_not_one_or_zero ()) gripe_logical_conversion (); return boolNDArray (m); } charNDArray octave_sparse_matrix::char_array_value (bool) const { charNDArray retval (dims (), 0); octave_idx_type nc = matrix.cols (); octave_idx_type nr = matrix.rows (); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = matrix.cidx(j); i < matrix.cidx(j+1); i++) retval(matrix.ridx(i) + nr * j) = static_cast<char>(matrix.data (i)); return retval; } ComplexMatrix octave_sparse_matrix::complex_matrix_value (bool) const { return ComplexMatrix (matrix.matrix_value ()); } ComplexNDArray octave_sparse_matrix::complex_array_value (bool) const { return ComplexNDArray (ComplexMatrix (matrix.matrix_value ())); } NDArray octave_sparse_matrix::array_value (bool) const { return NDArray (matrix.matrix_value ()); } octave_value octave_sparse_matrix::convert_to_str_internal (bool, bool, char type) const { octave_value retval; dim_vector dv = dims (); octave_idx_type nel = dv.numel (); if (nel == 0) { char s = '\0'; retval = octave_value (&s, type); } else { octave_idx_type nr = matrix.rows (); octave_idx_type nc = matrix.cols (); charNDArray chm (dv, static_cast<char> (0)); bool warned = false; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = matrix.cidx(j); i < matrix.cidx(j+1); i++) { OCTAVE_QUIT; double d = matrix.data (i); if (xisnan (d)) { ::error ("invalid conversion from NaN to character"); return retval; } else { int ival = NINT (d); if (ival < 0 || ival > UCHAR_MAX) { // FIXME -- is there something // better we could do? ival = 0; if (! warned) { ::warning ("range error for conversion to character value"); warned = true; } } chm (matrix.ridx(i) + j * nr) = static_cast<char> (ival); } } retval = octave_value (chm, true, type); } return retval; } bool octave_sparse_matrix::save_binary (std::ostream& os, bool&save_as_floats) { dim_vector d = this->dims (); if (d.length() < 1) return false; // Ensure that additional memory is deallocated matrix.maybe_compress (); int nr = d(0); int nc = d(1); int nz = nzmax (); int32_t itmp; // Use negative value for ndims to be consistent with other formats itmp= -2; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nr; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nc; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nz; os.write (reinterpret_cast<char *> (&itmp), 4); save_type st = LS_DOUBLE; if (save_as_floats) { if (matrix.too_large_for_float ()) { warning ("save: some values too large to save as floats --"); warning ("save: saving as doubles instead"); } else st = LS_FLOAT; } else if (matrix.nzmax () > 8192) // FIXME -- make this configurable. { double max_val, min_val; if (matrix.all_integers (max_val, min_val)) st = get_save_type (max_val, min_val); } // add one to the printed indices to go from // zero-based to one-based arrays for (int i = 0; i < nc+1; i++) { OCTAVE_QUIT; itmp = matrix.cidx(i); os.write (reinterpret_cast<char *> (&itmp), 4); } for (int i = 0; i < nz; i++) { OCTAVE_QUIT; itmp = matrix.ridx(i); os.write (reinterpret_cast<char *> (&itmp), 4); } write_doubles (os, matrix.data(), st, nz); return true; } bool octave_sparse_matrix::load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt) { int32_t nz, nc, nr, tmp; char ctmp; if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); if (tmp != -2) { error("load: only 2D sparse matrices are supported"); return false; } if (! is.read (reinterpret_cast<char *> (&nr), 4)) return false; if (! is.read (reinterpret_cast<char *> (&nc), 4)) return false; if (! is.read (reinterpret_cast<char *> (&nz), 4)) return false; if (swap) { swap_bytes<4> (&nr); swap_bytes<4> (&nc); swap_bytes<4> (&nz); } SparseMatrix m (static_cast<octave_idx_type> (nr), static_cast<octave_idx_type> (nc), static_cast<octave_idx_type> (nz)); for (int i = 0; i < nc+1; i++) { OCTAVE_QUIT; if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); m.xcidx(i) = tmp; } for (int i = 0; i < nz; i++) { OCTAVE_QUIT; if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); m.xridx(i) = tmp; } if (! is.read (reinterpret_cast<char *> (&ctmp), 1)) return false; read_doubles (is, m.xdata (), static_cast<save_type> (ctmp), nz, swap, fmt); if (error_state || ! is) return false; matrix = m; return true; } #if defined (HAVE_HDF5) bool octave_sparse_matrix::save_hdf5 (hid_t loc_id, const char *name, bool save_as_floats) { dim_vector dv = dims (); int empty = save_hdf5_empty (loc_id, name, dv); if (empty) return (empty > 0); // Ensure that additional memory is deallocated matrix.maybe_compress (); hid_t group_hid = H5Gcreate (loc_id, name, 0); if (group_hid < 0) return false; hid_t space_hid = -1, data_hid = -1; bool retval = true; SparseMatrix m = sparse_matrix_value (); octave_idx_type tmp; hsize_t hdims[2]; space_hid = H5Screate_simple (0, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "nr", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.rows (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "nc", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.cols (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "nz", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.nzmax (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); hdims[0] = m.cols() + 1; hdims[1] = 1; space_hid = H5Screate_simple (2, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "cidx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } octave_idx_type * itmp = m.xcidx (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); hdims[0] = m.nzmax (); hdims[1] = 1; space_hid = H5Screate_simple (2, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } data_hid = H5Dcreate (group_hid, "ridx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } itmp = m.xridx (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } hid_t save_type_hid = H5T_NATIVE_DOUBLE; if (save_as_floats) { if (m.too_large_for_float ()) { warning ("save: some values too large to save as floats --"); warning ("save: saving as doubles instead"); } else save_type_hid = H5T_NATIVE_FLOAT; } #if HAVE_HDF5_INT2FLOAT_CONVERSIONS // hdf5 currently doesn't support float/integer conversions else { double max_val, min_val; if (m.all_integers (max_val, min_val)) save_type_hid = save_type_to_hdf5 (get_save_type (max_val, min_val)); } #endif /* HAVE_HDF5_INT2FLOAT_CONVERSIONS */ data_hid = H5Dcreate (group_hid, "data", save_type_hid, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } double * dtmp = m.xdata (); retval = H5Dwrite (data_hid, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, dtmp) >= 0; H5Dclose (data_hid); H5Sclose (space_hid); H5Gclose (group_hid); return retval; } bool octave_sparse_matrix::load_hdf5 (hid_t loc_id, const char *name, bool /* have_h5giterate_bug */) { octave_idx_type nr, nc, nz; hid_t group_hid, data_hid, space_hid; hsize_t rank; dim_vector dv; int empty = load_hdf5_empty (loc_id, name, dv); if (empty > 0) matrix.resize(dv); if (empty) return (empty > 0); group_hid = H5Gopen (loc_id, name); if (group_hid < 0) return false; data_hid = H5Dopen (group_hid, "nr"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nr) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); data_hid = H5Dopen (group_hid, "nc"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nc) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); data_hid = H5Dopen (group_hid, "nz"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nz) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); SparseMatrix m (static_cast<octave_idx_type> (nr), static_cast<octave_idx_type> (nc), static_cast<octave_idx_type> (nz)); data_hid = H5Dopen (group_hid, "cidx"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank); H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nc + 1 || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } octave_idx_type *itmp = m.xcidx (); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); data_hid = H5Dopen (group_hid, "ridx"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nz || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } itmp = m.xridx (); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); data_hid = H5Dopen (group_hid, "data"); space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nz || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } double *dtmp = m.xdata (); if (H5Dread (data_hid, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, dtmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); matrix = m; return true; } #endif mxArray * octave_sparse_matrix::as_mxArray (void) const { mwSize nz = nzmax(); mwSize nr = rows(); mwSize nc = columns(); mxArray *retval = new mxArray (mxDOUBLE_CLASS, nr, nc, nz, mxREAL); double *pr = static_cast<double *> (retval->get_data ()); mwIndex *ir = retval->get_ir(); mwIndex *jc = retval->get_jc(); for (mwIndex i = 0; i < nz; i++) { pr[i] = matrix.data(i); ir[i] = matrix.ridx(i); } for (mwIndex i = 0; i < nc + 1; i++) jc[i] = matrix.cidx(i); return retval; } static bool any_element_less_than (const SparseMatrix& a, double val) { octave_idx_type len = a.nnz (); if (val > 0. && len != a.numel ()) return true; for (octave_idx_type i = 0; i < len; i++) { OCTAVE_QUIT; if (a.data(i) < val) return true; } return false; } static bool any_element_greater_than (const SparseMatrix& a, double val) { octave_idx_type len = a.nnz (); if (val < 0. && len != a.numel ()) return true; for (octave_idx_type i = 0; i < len; i++) { OCTAVE_QUIT; if (a.data(i) > val) return true; } return false; } #define SPARSE_MAPPER(MAP, AMAP, FCN) \ octave_value \ octave_sparse_matrix::MAP (void) const \ { \ static AMAP dmap = FCN; \ return matrix.map (dmap); \ } #define CD_SPARSE_MAPPER(MAP, RFCN, CFCN, L1, L2) \ octave_value \ octave_sparse_matrix::MAP (void) const \ { \ static SparseMatrix::dmapper dmap = RFCN; \ static SparseMatrix::cmapper cmap = CFCN; \ \ return (any_element_less_than (matrix, L1) \ ? octave_value (matrix.map (cmap)) \ : (any_element_greater_than (matrix, L2) \ ? octave_value (matrix.map (cmap)) \ : octave_value (matrix.map (dmap)))); \ } static double xconj (double x) { return x; } SPARSE_MAPPER (erf, SparseMatrix::dmapper, ::erf) SPARSE_MAPPER (erfc, SparseMatrix::dmapper, ::erfc) SPARSE_MAPPER (gamma, SparseMatrix::dmapper, xgamma) CD_SPARSE_MAPPER (lgamma, xlgamma, xlgamma, 0.0, octave_Inf) SPARSE_MAPPER (abs, SparseMatrix::dmapper, ::fabs) CD_SPARSE_MAPPER (acos, ::acos, ::acos, -1.0, 1.0) CD_SPARSE_MAPPER (acosh, ::acosh, ::acosh, 1.0, octave_Inf) SPARSE_MAPPER (angle, SparseMatrix::dmapper, ::arg) SPARSE_MAPPER (arg, SparseMatrix::dmapper, ::arg) CD_SPARSE_MAPPER (asin, ::asin, ::asin, -1.0, 1.0) SPARSE_MAPPER (asinh, SparseMatrix::dmapper, ::asinh) SPARSE_MAPPER (atan, SparseMatrix::dmapper, ::atan) CD_SPARSE_MAPPER (atanh, ::atanh, ::atanh, -1.0, 1.0) SPARSE_MAPPER (ceil, SparseMatrix::dmapper, ::ceil) SPARSE_MAPPER (conj, SparseMatrix::dmapper, xconj) SPARSE_MAPPER (cos, SparseMatrix::dmapper, ::cos) SPARSE_MAPPER (cosh, SparseMatrix::dmapper, ::cosh) SPARSE_MAPPER (exp, SparseMatrix::dmapper, ::exp) SPARSE_MAPPER (expm1, SparseMatrix::dmapper, ::expm1) SPARSE_MAPPER (fix, SparseMatrix::dmapper, ::fix) SPARSE_MAPPER (floor, SparseMatrix::dmapper, ::floor) SPARSE_MAPPER (imag, SparseMatrix::dmapper, ::imag) CD_SPARSE_MAPPER (log, ::log, std::log, 0.0, octave_Inf) CD_SPARSE_MAPPER (log2, xlog2, xlog2, 0.0, octave_Inf) CD_SPARSE_MAPPER (log10, ::log10, std::log10, 0.0, octave_Inf) CD_SPARSE_MAPPER (log1p, ::log1p, ::log1p, 0.0, octave_Inf) SPARSE_MAPPER (real, SparseMatrix::dmapper, ::real) SPARSE_MAPPER (round, SparseMatrix::dmapper, xround) SPARSE_MAPPER (roundb, SparseMatrix::dmapper, xroundb) SPARSE_MAPPER (signum, SparseMatrix::dmapper, ::signum) SPARSE_MAPPER (sin, SparseMatrix::dmapper, ::sin) SPARSE_MAPPER (sinh, SparseMatrix::dmapper, ::sinh) CD_SPARSE_MAPPER (sqrt, ::sqrt, std::sqrt, 0.0, octave_Inf) SPARSE_MAPPER (tan, SparseMatrix::dmapper, ::tan) SPARSE_MAPPER (tanh, SparseMatrix::dmapper, ::tanh) SPARSE_MAPPER (finite, SparseMatrix::bmapper, xfinite) SPARSE_MAPPER (isinf, SparseMatrix::bmapper, xisinf) SPARSE_MAPPER (isna, SparseMatrix::bmapper, octave_is_NA) SPARSE_MAPPER (isnan, SparseMatrix::bmapper, xisnan) /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */