Mercurial > hg > octave-nkf
view liboctave/mx-op-defs.h @ 5356:06585668a971 ss-2-9-3
[project @ 2005-05-18 17:20:31 by jwe]
author | jwe |
---|---|
date | Wed, 18 May 2005 17:20:32 +0000 |
parents | 4c8a2e4e0717 |
children | 143b556ce725 |
line wrap: on
line source
/* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #if !defined (octave_mx_op_defs_h) #define octave_mx_op_defs_h 1 #include "mx-inlines.cc" #define BIN_OP_DECL(R, OP, X, Y) \ extern R OP (const X&, const Y&) class boolMatrix; class boolNDArray; #define CMP_OP_DECL(OP, X, Y) \ extern boolMatrix OP (const X&, const Y&) #define NDCMP_OP_DECL(OP, X, Y) \ extern boolNDArray OP (const X&, const Y&) #define BOOL_OP_DECL(OP, X, Y) \ extern boolMatrix OP (const X&, const Y&) #define NDBOOL_OP_DECL(OP, X, Y) \ extern boolNDArray OP (const X&, const Y&) // vector by scalar operations. #define VS_BIN_OP_DECLS(R, V, S) \ BIN_OP_DECL (R, operator +, V, S); \ BIN_OP_DECL (R, operator -, V, S); \ BIN_OP_DECL (R, operator *, V, S); \ BIN_OP_DECL (R, operator /, V, S); #define VS_BIN_OP(R, F, OP, V, S) \ R \ F (const V& v, const S& s) \ { \ int len = v.length (); \ \ R r (len); \ \ for (int i = 0; i < len; i++) \ r.elem(i) = v.elem(i) OP s; \ \ return r; \ } #define VS_BIN_OPS(R, V, S) \ VS_BIN_OP (R, operator +, +, V, S) \ VS_BIN_OP (R, operator -, -, V, S) \ VS_BIN_OP (R, operator *, *, V, S) \ VS_BIN_OP (R, operator /, /, V, S) #define VS_OP_DECLS(R, V, S) \ VS_BIN_OP_DECLS(R, V, S) // scalar by vector by operations. #define SV_BIN_OP_DECLS(R, S, V) \ BIN_OP_DECL (R, operator +, S, V); \ BIN_OP_DECL (R, operator -, S, V); \ BIN_OP_DECL (R, operator *, S, V); \ BIN_OP_DECL (R, operator /, S, V); #define SV_BIN_OP(R, F, OP, S, V) \ R \ F (const S& s, const V& v) \ { \ int len = v.length (); \ \ R r (len); \ \ for (int i = 0; i < len; i++) \ r.elem(i) = s OP v.elem(i); \ \ return r; \ } #define SV_BIN_OPS(R, S, V) \ SV_BIN_OP (R, operator +, +, S, V) \ SV_BIN_OP (R, operator -, -, S, V) \ SV_BIN_OP (R, operator *, *, S, V) \ SV_BIN_OP (R, operator /, /, S, V) #define SV_OP_DECLS(R, S, V) \ SV_BIN_OP_DECLS(R, S, V) // vector by vector operations. #define VV_BIN_OP_DECLS(R, V1, V2) \ BIN_OP_DECL (R, operator +, V1, V2); \ BIN_OP_DECL (R, operator -, V1, V2); \ BIN_OP_DECL (R, product, V1, V2); \ BIN_OP_DECL (R, quotient, V1, V2); #define VV_BIN_OP(R, F, OP, V1, V2) \ R \ F (const V1& v1, const V2& v2) \ { \ R r; \ \ int v1_len = v1.length (); \ int v2_len = v2.length (); \ \ if (v1_len != v2_len) \ gripe_nonconformant (#OP, v1_len, v2_len); \ else \ { \ r.resize (v1_len); \ \ for (int i = 0; i < v1_len; i++) \ r.elem(i) = v1.elem(i) OP v2.elem(i); \ } \ \ return r; \ } #define VV_BIN_OPS(R, V1, V2) \ VV_BIN_OP (R, operator +, +, V1, V2) \ VV_BIN_OP (R, operator -, -, V1, V2) \ VV_BIN_OP (R, product, *, V1, V2) \ VV_BIN_OP (R, quotient, /, V1, V2) #define VV_OP_DECLS(R, V1, V2) \ VV_BIN_OP_DECLS(R, V1, V2) // matrix by scalar operations. #define MS_BIN_OP_DECLS(R, M, S) \ BIN_OP_DECL (R, operator +, M, S); \ BIN_OP_DECL (R, operator -, M, S); \ BIN_OP_DECL (R, operator *, M, S); \ BIN_OP_DECL (R, operator /, M, S); #define MS_BIN_OP(R, OP, M, S, F) \ R \ OP (const M& m, const S& s) \ { \ int nr = m.rows (); \ int nc = m.cols (); \ \ R r (nr, nc); \ \ if (nr > 0 && nc > 0) \ F ## _vs (r.fortran_vec (), m.data (), nr * nc, s); \ \ return r; \ } #define MS_BIN_OPS(R, M, S) \ MS_BIN_OP (R, operator +, M, S, mx_inline_add) \ MS_BIN_OP (R, operator -, M, S, mx_inline_subtract) \ MS_BIN_OP (R, operator *, M, S, mx_inline_multiply) \ MS_BIN_OP (R, operator /, M, S, mx_inline_divide) #define MS_CMP_OP_DECLS(M, S) \ CMP_OP_DECL (mx_el_lt, M, S); \ CMP_OP_DECL (mx_el_le, M, S); \ CMP_OP_DECL (mx_el_ge, M, S); \ CMP_OP_DECL (mx_el_gt, M, S); \ CMP_OP_DECL (mx_el_eq, M, S); \ CMP_OP_DECL (mx_el_ne, M, S); #define MS_CMP_OP(F, OP, M, MC, S, SC) \ boolMatrix \ F (const M& m, const S& s) \ { \ boolMatrix r; \ \ int nr = m.rows (); \ int nc = m.cols (); \ \ r.resize (nr, nc); \ \ if (nr > 0 && nc > 0) \ { \ for (int j = 0; j < nc; j++) \ for (int i = 0; i < nr; i++) \ r.elem(i, j) = MC (m.elem(i, j)) OP SC (s); \ } \ \ return r; \ } #define MS_CMP_OPS(M, CM, S, CS) \ MS_CMP_OP (mx_el_lt, <, M, CM, S, CS) \ MS_CMP_OP (mx_el_le, <=, M, CM, S, CS) \ MS_CMP_OP (mx_el_ge, >=, M, CM, S, CS) \ MS_CMP_OP (mx_el_gt, >, M, CM, S, CS) \ MS_CMP_OP (mx_el_eq, ==, M, , S, ) \ MS_CMP_OP (mx_el_ne, !=, M, , S, ) #define MS_BOOL_OP_DECLS(M, S) \ BOOL_OP_DECL (mx_el_and, M, S); \ BOOL_OP_DECL (mx_el_or, M, S); \ #define MS_BOOL_OP(F, OP, M, S, LHS_ZERO, RHS_ZERO) \ boolMatrix \ F (const M& m, const S& s) \ { \ boolMatrix r; \ \ int nr = m.rows (); \ int nc = m.cols (); \ \ if (nr != 0 && nc != 0) \ { \ r.resize (nr, nc); \ \ for (int j = 0; j < nc; j++) \ for (int i = 0; i < nr; i++) \ r.elem(i, j) = (m.elem(i, j) != LHS_ZERO) OP (s != RHS_ZERO); \ } \ \ return r; \ } #define MS_BOOL_OPS2(M, S, LHS_ZERO, RHS_ZERO) \ MS_BOOL_OP (mx_el_and, &&, M, S, LHS_ZERO, RHS_ZERO) \ MS_BOOL_OP (mx_el_or, ||, M, S, LHS_ZERO, RHS_ZERO) #define MS_BOOL_OPS(M, S, ZERO) \ MS_BOOL_OPS2(M, S, ZERO, ZERO) #define MS_OP_DECLS(R, M, S) \ MS_BIN_OP_DECLS (R, M, S) \ MS_CMP_OP_DECLS (M, S) \ MS_BOOL_OP_DECLS (M, S) \ // scalar by matrix operations. #define SM_BIN_OP_DECLS(R, S, M) \ BIN_OP_DECL (R, operator +, S, M); \ BIN_OP_DECL (R, operator -, S, M); \ BIN_OP_DECL (R, operator *, S, M); \ BIN_OP_DECL (R, operator /, S, M); #define SM_BIN_OP(R, OP, S, M, F) \ R \ OP (const S& s, const M& m) \ { \ int nr = m.rows (); \ int nc = m.cols (); \ \ R r (nr, nc); \ \ if (nr > 0 && nc > 0) \ F ## _sv (r.fortran_vec (), s, m.data (), nr * nc); \ \ return r; \ } #define SM_BIN_OPS(R, S, M) \ SM_BIN_OP (R, operator +, S, M, mx_inline_add) \ SM_BIN_OP (R, operator -, S, M, mx_inline_subtract) \ SM_BIN_OP (R, operator *, S, M, mx_inline_multiply) \ SM_BIN_OP (R, operator /, S, M, mx_inline_divide) #define SM_CMP_OP_DECLS(S, M) \ CMP_OP_DECL (mx_el_lt, S, M); \ CMP_OP_DECL (mx_el_le, S, M); \ CMP_OP_DECL (mx_el_ge, S, M); \ CMP_OP_DECL (mx_el_gt, S, M); \ CMP_OP_DECL (mx_el_eq, S, M); \ CMP_OP_DECL (mx_el_ne, S, M); #define SM_CMP_OP(F, OP, S, SC, M, MC) \ boolMatrix \ F (const S& s, const M& m) \ { \ boolMatrix r; \ \ int nr = m.rows (); \ int nc = m.cols (); \ \ r.resize (nr, nc); \ \ if (nr > 0 && nc > 0) \ { \ for (int j = 0; j < nc; j++) \ for (int i = 0; i < nr; i++) \ r.elem(i, j) = SC (s) OP MC (m.elem(i, j)); \ } \ \ return r; \ } #define SM_CMP_OPS(S, CS, M, CM) \ SM_CMP_OP (mx_el_lt, <, S, CS, M, CM) \ SM_CMP_OP (mx_el_le, <=, S, CS, M, CM) \ SM_CMP_OP (mx_el_ge, >=, S, CS, M, CM) \ SM_CMP_OP (mx_el_gt, >, S, CS, M, CM) \ SM_CMP_OP (mx_el_eq, ==, S, , M, ) \ SM_CMP_OP (mx_el_ne, !=, S, , M, ) #define SM_BOOL_OP_DECLS(S, M) \ BOOL_OP_DECL (mx_el_and, S, M); \ BOOL_OP_DECL (mx_el_or, S, M); \ #define SM_BOOL_OP(F, OP, S, M, LHS_ZERO, RHS_ZERO) \ boolMatrix \ F (const S& s, const M& m) \ { \ boolMatrix r; \ \ int nr = m.rows (); \ int nc = m.cols (); \ \ if (nr != 0 && nc != 0) \ { \ r.resize (nr, nc); \ \ for (int j = 0; j < nc; j++) \ for (int i = 0; i < nr; i++) \ r.elem(i, j) = (s != LHS_ZERO) OP (m.elem(i, j) != RHS_ZERO); \ } \ \ return r; \ } #define SM_BOOL_OPS2(S, M, LHS_ZERO, RHS_ZERO) \ SM_BOOL_OP (mx_el_and, &&, S, M, LHS_ZERO, RHS_ZERO) \ SM_BOOL_OP (mx_el_or, ||, S, M, LHS_ZERO, RHS_ZERO) #define SM_BOOL_OPS(S, M, ZERO) \ SM_BOOL_OPS2(S, M, ZERO, ZERO) #define SM_OP_DECLS(R, S, M) \ SM_BIN_OP_DECLS (R, S, M) \ SM_CMP_OP_DECLS (S, M) \ SM_BOOL_OP_DECLS (S, M) \ // matrix by matrix operations. #define MM_BIN_OP_DECLS(R, M1, M2) \ BIN_OP_DECL (R, operator +, M1, M2); \ BIN_OP_DECL (R, operator -, M1, M2); \ BIN_OP_DECL (R, product, M1, M2); \ BIN_OP_DECL (R, quotient, M1, M2); #define MM_BIN_OP(R, OP, M1, M2, F) \ R \ OP (const M1& m1, const M2& m2) \ { \ R r; \ \ int m1_nr = m1.rows (); \ int m1_nc = m1.cols (); \ \ int m2_nr = m2.rows (); \ int m2_nc = m2.cols (); \ \ if (m1_nr != m2_nr || m1_nc != m2_nc) \ gripe_nonconformant (#OP, m1_nr, m1_nc, m2_nr, m2_nc); \ else \ { \ r.resize (m1_nr, m1_nc); \ \ if (m1_nr > 0 && m1_nc > 0) \ F ## _vv (r.fortran_vec (), m1.data (), m2.data (), m1_nr * m1_nc); \ } \ \ return r; \ } #define MM_BIN_OPS(R, M1, M2) \ MM_BIN_OP (R, operator +, M1, M2, mx_inline_add) \ MM_BIN_OP (R, operator -, M1, M2, mx_inline_subtract) \ MM_BIN_OP (R, product, M1, M2, mx_inline_multiply) \ MM_BIN_OP (R, quotient, M1, M2, mx_inline_divide) #define MM_CMP_OP_DECLS(M1, M2) \ CMP_OP_DECL (mx_el_lt, M1, M2); \ CMP_OP_DECL (mx_el_le, M1, M2); \ CMP_OP_DECL (mx_el_ge, M1, M2); \ CMP_OP_DECL (mx_el_gt, M1, M2); \ CMP_OP_DECL (mx_el_eq, M1, M2); \ CMP_OP_DECL (mx_el_ne, M1, M2); #define MM_CMP_OP(F, OP, M1, C1, M2, C2) \ boolMatrix \ F (const M1& m1, const M2& m2) \ { \ boolMatrix r; \ \ int m1_nr = m1.rows (); \ int m1_nc = m1.cols (); \ \ int m2_nr = m2.rows (); \ int m2_nc = m2.cols (); \ \ if (m1_nr == m2_nr && m1_nc == m2_nc) \ { \ r.resize (m1_nr, m1_nc); \ \ for (int j = 0; j < m1_nc; j++) \ for (int i = 0; i < m1_nr; i++) \ r.elem(i, j) = C1 (m1.elem(i, j)) OP C2 (m2.elem(i, j)); \ } \ else \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ \ return r; \ } #define MM_CMP_OPS(M1, C1, M2, C2) \ MM_CMP_OP (mx_el_lt, <, M1, C1, M2, C2) \ MM_CMP_OP (mx_el_le, <=, M1, C1, M2, C2) \ MM_CMP_OP (mx_el_ge, >=, M1, C1, M2, C2) \ MM_CMP_OP (mx_el_gt, >, M1, C1, M2, C2) \ MM_CMP_OP (mx_el_eq, ==, M1, , M2, ) \ MM_CMP_OP (mx_el_ne, !=, M1, , M2, ) #define MM_BOOL_OP_DECLS(M1, M2) \ BOOL_OP_DECL (mx_el_and, M1, M2); \ BOOL_OP_DECL (mx_el_or, M1, M2); #define MM_BOOL_OP(F, OP, M1, M2, LHS_ZERO, RHS_ZERO) \ boolMatrix \ F (const M1& m1, const M2& m2) \ { \ boolMatrix r; \ \ int m1_nr = m1.rows (); \ int m1_nc = m1.cols (); \ \ int m2_nr = m2.rows (); \ int m2_nc = m2.cols (); \ \ if (m1_nr == m2_nr && m1_nc == m2_nc) \ { \ if (m1_nr != 0 || m1_nc != 0) \ { \ r.resize (m1_nr, m1_nc); \ \ for (int j = 0; j < m1_nc; j++) \ for (int i = 0; i < m1_nr; i++) \ r.elem(i, j) = (m1.elem(i, j) != LHS_ZERO) \ OP (m2.elem(i, j) != RHS_ZERO); \ } \ } \ else \ { \ if ((m1_nr != 0 || m1_nc != 0) && (m2_nr != 0 || m2_nc != 0)) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ } \ \ return r; \ } #define MM_BOOL_OPS2(M1, M2, LHS_ZERO, RHS_ZERO) \ MM_BOOL_OP (mx_el_and, &&, M1, M2, LHS_ZERO, RHS_ZERO) \ MM_BOOL_OP (mx_el_or, ||, M1, M2, LHS_ZERO, RHS_ZERO) #define MM_BOOL_OPS(M1, M2, ZERO) \ MM_BOOL_OPS2(M1, M2, ZERO, ZERO) #define MM_OP_DECLS(R, M1, M2) \ MM_BIN_OP_DECLS (R, M1, M2) \ MM_CMP_OP_DECLS (M1, M2) \ MM_BOOL_OP_DECLS (M1, M2) // N-d matrix by scalar operations. #define NDS_BIN_OP_DECLS(R, ND, S) \ BIN_OP_DECL (R, operator +, ND, S); \ BIN_OP_DECL (R, operator -, ND, S); \ BIN_OP_DECL (R, operator *, ND, S); \ BIN_OP_DECL (R, operator /, ND, S); #define NDS_BIN_OP(R, OP, ND, S, F) \ R \ OP (const ND& m, const S& s) \ { \ R r (m.dims ()); \ \ int len = m.length (); \ \ if (len > 0) \ F ## _vs (r.fortran_vec (), m.data (), len, s); \ \ return r; \ } #define NDS_BIN_OPS(R, ND, S) \ NDS_BIN_OP (R, operator +, ND, S, mx_inline_add) \ NDS_BIN_OP (R, operator -, ND, S, mx_inline_subtract) \ NDS_BIN_OP (R, operator *, ND, S, mx_inline_multiply) \ NDS_BIN_OP (R, operator /, ND, S, mx_inline_divide) #define NDS_CMP_OP_DECLS(ND, S) \ NDCMP_OP_DECL (mx_el_lt, ND, S); \ NDCMP_OP_DECL (mx_el_le, ND, S); \ NDCMP_OP_DECL (mx_el_ge, ND, S); \ NDCMP_OP_DECL (mx_el_gt, ND, S); \ NDCMP_OP_DECL (mx_el_eq, ND, S); \ NDCMP_OP_DECL (mx_el_ne, ND, S); #define NDS_CMP_OP(F, OP, ND, NDC, S, SC) \ boolNDArray \ F (const ND& m, const S& s) \ { \ boolNDArray r; \ \ int len = m.length (); \ \ r.resize (m.dims ()); \ \ for (int i = 0; i < len; i++) \ r.elem(i) = NDC (m.elem(i)) OP SC (s); \ \ return r; \ } #define NDS_CMP_OPS(ND, NDC, S, SC) \ NDS_CMP_OP (mx_el_lt, <, ND, NDC, S, SC) \ NDS_CMP_OP (mx_el_le, <=, ND, NDC, S, SC) \ NDS_CMP_OP (mx_el_ge, >=, ND, NDC, S, SC) \ NDS_CMP_OP (mx_el_gt, >, ND, NDC, S, SC) \ NDS_CMP_OP (mx_el_eq, ==, ND, , S, ) \ NDS_CMP_OP (mx_el_ne, !=, ND, , S, ) #define NDS_BOOL_OP_DECLS(ND, S) \ NDBOOL_OP_DECL (mx_el_and, ND, S); \ NDBOOL_OP_DECL (mx_el_or, ND, S); #define NDS_BOOL_OP(F, OP, ND, S, LHS_ZERO, RHS_ZERO) \ boolNDArray \ F (const ND& m, const S& s) \ { \ boolNDArray r; \ \ int len = m.length (); \ \ if (len > 0) \ { \ r.resize (m.dims ()); \ \ for (int i = 0; i < len; i++) \ r.elem(i) = (m.elem(i) != LHS_ZERO) OP (s != RHS_ZERO); \ } \ \ return r; \ } #define NDS_BOOL_OPS2(ND, S, LHS_ZERO, RHS_ZERO) \ NDS_BOOL_OP (mx_el_and, &&, ND, S, LHS_ZERO, RHS_ZERO) \ NDS_BOOL_OP (mx_el_or, ||, ND, S, LHS_ZERO, RHS_ZERO) #define NDS_BOOL_OPS(ND, S, ZERO) \ NDS_BOOL_OPS2(ND, S, ZERO, ZERO) #define NDS_OP_DECLS(R, ND, S) \ NDS_BIN_OP_DECLS (R, ND, S) \ NDS_CMP_OP_DECLS (ND, S) \ NDS_BOOL_OP_DECLS (ND, S) // scalar by N-d matrix operations. #define SND_BIN_OP_DECLS(R, S, ND) \ BIN_OP_DECL (R, operator +, S, ND); \ BIN_OP_DECL (R, operator -, S, ND); \ BIN_OP_DECL (R, operator *, S, ND); \ BIN_OP_DECL (R, operator /, S, ND); #define SND_BIN_OP(R, OP, S, ND, F) \ R \ OP (const S& s, const ND& m) \ { \ R r (m.dims ()); \ \ int len = m.length (); \ \ if (len > 0) \ F ## _sv (r.fortran_vec (), s, m.data (), len); \ \ return r; \ } #define SND_BIN_OPS(R, S, ND) \ SND_BIN_OP (R, operator +, S, ND, mx_inline_add) \ SND_BIN_OP (R, operator -, S, ND, mx_inline_subtract) \ SND_BIN_OP (R, operator *, S, ND, mx_inline_multiply) \ SND_BIN_OP (R, operator /, S, ND, mx_inline_divide) #define SND_CMP_OP_DECLS(S, ND) \ NDCMP_OP_DECL (mx_el_lt, S, ND); \ NDCMP_OP_DECL (mx_el_le, S, ND); \ NDCMP_OP_DECL (mx_el_ge, S, ND); \ NDCMP_OP_DECL (mx_el_gt, S, ND); \ NDCMP_OP_DECL (mx_el_eq, S, ND); \ NDCMP_OP_DECL (mx_el_ne, S, ND); #define SND_CMP_OP(F, OP, S, SC, ND, NDC) \ boolNDArray \ F (const S& s, const ND& m) \ { \ boolNDArray r; \ \ int len = m.length (); \ \ r.resize (m.dims ()); \ \ for (int i = 0; i < len; i++) \ r.elem(i) = SC (s) OP NDC (m.elem(i)); \ \ return r; \ } #define SND_CMP_OPS(S, CS, ND, CND) \ SND_CMP_OP (mx_el_lt, <, S, CS, ND, CND) \ SND_CMP_OP (mx_el_le, <=, S, CS, ND, CND) \ SND_CMP_OP (mx_el_ge, >=, S, CS, ND, CND) \ SND_CMP_OP (mx_el_gt, >, S, CS, ND, CND) \ SND_CMP_OP (mx_el_eq, ==, S, , ND, ) \ SND_CMP_OP (mx_el_ne, !=, S, , ND, ) #define SND_BOOL_OP_DECLS(S, ND) \ NDBOOL_OP_DECL (mx_el_and, S, ND); \ NDBOOL_OP_DECL (mx_el_or, S, ND); #define SND_BOOL_OP(F, OP, S, ND, LHS_ZERO, RHS_ZERO) \ boolNDArray \ F (const S& s, const ND& m) \ { \ boolNDArray r; \ \ int len = m.length (); \ \ if (len > 0) \ { \ r.resize (m.dims ()); \ \ for (int i = 0; i < len; i++) \ r.elem(i) = (s != LHS_ZERO) OP (m.elem(i) != RHS_ZERO); \ } \ \ return r; \ } #define SND_BOOL_OPS2(S, ND, LHS_ZERO, RHS_ZERO) \ SND_BOOL_OP (mx_el_and, &&, S, ND, LHS_ZERO, RHS_ZERO) \ SND_BOOL_OP (mx_el_or, ||, S, ND, LHS_ZERO, RHS_ZERO) #define SND_BOOL_OPS(S, ND, ZERO) \ SND_BOOL_OPS2(S, ND, ZERO, ZERO) #define SND_OP_DECLS(R, S, ND) \ SND_BIN_OP_DECLS (R, S, ND) \ SND_CMP_OP_DECLS (S, ND) \ SND_BOOL_OP_DECLS (S, ND) // N-d matrix by N-d matrix operations. #define NDND_BIN_OP_DECLS(R, ND1, ND2) \ BIN_OP_DECL (R, operator +, ND1, ND2); \ BIN_OP_DECL (R, operator -, ND1, ND2); \ BIN_OP_DECL (R, product, ND1, ND2); \ BIN_OP_DECL (R, quotient, ND1, ND2); #define NDND_BIN_OP(R, OP, ND1, ND2, F) \ R \ OP (const ND1& m1, const ND2& m2) \ { \ R r; \ \ dim_vector m1_dims = m1.dims (); \ dim_vector m2_dims = m2.dims (); \ \ if (m1_dims != m2_dims) \ gripe_nonconformant (#OP, m1_dims, m2_dims); \ else \ { \ r.resize (m1_dims); \ \ int len = m1.length (); \ \ if (len > 0) \ F ## _vv (r.fortran_vec (), m1.data (), m2.data (), len); \ } \ \ return r; \ } #define NDND_BIN_OPS(R, ND1, ND2) \ NDND_BIN_OP (R, operator +, ND1, ND2, mx_inline_add) \ NDND_BIN_OP (R, operator -, ND1, ND2, mx_inline_subtract) \ NDND_BIN_OP (R, product, ND1, ND2, mx_inline_multiply) \ NDND_BIN_OP (R, quotient, ND1, ND2, mx_inline_divide) #define NDND_CMP_OP_DECLS(ND1, ND2) \ NDCMP_OP_DECL (mx_el_lt, ND1, ND2); \ NDCMP_OP_DECL (mx_el_le, ND1, ND2); \ NDCMP_OP_DECL (mx_el_ge, ND1, ND2); \ NDCMP_OP_DECL (mx_el_gt, ND1, ND2); \ NDCMP_OP_DECL (mx_el_eq, ND1, ND2); \ NDCMP_OP_DECL (mx_el_ne, ND1, ND2); #define NDND_CMP_OP(F, OP, ND1, C1, ND2, C2) \ boolNDArray \ F (const ND1& m1, const ND2& m2) \ { \ boolNDArray r; \ \ dim_vector m1_dims = m1.dims (); \ dim_vector m2_dims = m2.dims (); \ \ if (m1_dims == m2_dims) \ { \ r.resize (m1_dims); \ \ for (int i = 0; i < m1.length (); i++) \ r.elem(i) = C1 (m1.elem(i)) OP C2 (m2.elem(i)); \ } \ else \ gripe_nonconformant (#F, m1_dims, m2_dims); \ \ return r; \ } #define NDND_CMP_OPS(ND1, C1, ND2, C2) \ NDND_CMP_OP (mx_el_lt, <, ND1, C1, ND2, C2) \ NDND_CMP_OP (mx_el_le, <=, ND1, C1, ND2, C2) \ NDND_CMP_OP (mx_el_ge, >=, ND1, C1, ND2, C2) \ NDND_CMP_OP (mx_el_gt, >, ND1, C1, ND2, C2) \ NDND_CMP_OP (mx_el_eq, ==, ND1, , ND2, ) \ NDND_CMP_OP (mx_el_ne, !=, ND1, , ND2, ) #define NDND_BOOL_OP_DECLS(ND1, ND2) \ NDBOOL_OP_DECL (mx_el_and, ND1, ND2); \ NDBOOL_OP_DECL (mx_el_or, ND1, ND2); #define NDND_BOOL_OP(F, OP, ND1, ND2, LHS_ZERO, RHS_ZERO) \ boolNDArray \ F (const ND1& m1, const ND2& m2) \ { \ boolNDArray r; \ \ dim_vector m1_dims = m1.dims (); \ dim_vector m2_dims = m2.dims (); \ \ if (m1_dims == m2_dims) \ { \ if (! m1_dims.all_zero ()) \ { \ r.resize (m1_dims); \ \ for (int i = 0; i < m1.length (); i++) \ r.elem(i) = (m1.elem(i) != LHS_ZERO) OP (m2.elem(i) != RHS_ZERO); \ } \ } \ else \ gripe_nonconformant (#F, m1_dims, m2_dims); \ \ return r; \ } #define NDND_BOOL_OPS2(ND1, ND2, LHS_ZERO, RHS_ZERO) \ NDND_BOOL_OP (mx_el_and, &&, ND1, ND2, LHS_ZERO, RHS_ZERO) \ NDND_BOOL_OP (mx_el_or, ||, ND1, ND2, LHS_ZERO, RHS_ZERO) #define NDND_BOOL_OPS(ND1, ND2, ZERO) \ NDND_BOOL_OPS2(ND1, ND2, ZERO, ZERO) #define NDND_OP_DECLS(R, ND1, ND2) \ NDND_BIN_OP_DECLS (R, ND1, ND2) \ NDND_CMP_OP_DECLS (ND1, ND2) \ NDND_BOOL_OP_DECLS (ND1, ND2) // scalar by diagonal matrix operations. #define SDM_BIN_OP_DECLS(R, S, DM) \ BIN_OP_DECL (R, operator +, S, DM); \ BIN_OP_DECL (R, operator -, S, DM); #define SDM_BIN_OP(R, OP, S, DM, OPEQ) \ R \ OP (const S& s, const DM& dm) \ { \ int nr = dm.rows (); \ int nc = dm.cols (); \ \ R r (nr, nc, s); \ \ for (int i = 0; i < dm.length (); i++) \ r.elem(i, i) OPEQ dm.elem(i, i); \ \ return r; \ } #define SDM_BIN_OPS(R, S, DM) \ SDM_BIN_OP (R, operator +, S, DM, +=) \ SDM_BIN_OP (R, operator -, S, DM, -=) #define SDM_OP_DECLS(R, S, DM) \ SDM_BIN_OP_DECLS(R, S, DM) // diagonal matrix by scalar operations. #define DMS_BIN_OP_DECLS(R, DM, S) \ BIN_OP_DECL (R, operator +, DM, S); \ BIN_OP_DECL (R, operator -, DM, S); #define DMS_BIN_OP(R, OP, DM, S, SGN) \ R \ OP (const DM& dm, const S& s) \ { \ int nr = dm.rows (); \ int nc = dm.cols (); \ \ R r (nr, nc, SGN s); \ \ for (int i = 0; i < dm.length (); i++) \ r.elem(i, i) += dm.elem(i, i); \ \ return r; \ } #define DMS_BIN_OPS(R, DM, S) \ DMS_BIN_OP (R, operator +, DM, S, ) \ DMS_BIN_OP (R, operator -, DM, S, -) #define DMS_OP_DECLS(R, DM, S) \ DMS_BIN_OP_DECLS(R, DM, S) // matrix by diagonal matrix operations. #define MDM_BIN_OP_DECLS(R, M, DM) \ BIN_OP_DECL (R, operator +, M, DM); \ BIN_OP_DECL (R, operator -, M, DM); \ BIN_OP_DECL (R, operator *, M, DM); #define MDM_BIN_OP(R, OP, M, DM, OPEQ) \ R \ OP (const M& m, const DM& dm) \ { \ R r; \ \ int m_nr = m.rows (); \ int m_nc = m.cols (); \ \ int dm_nr = dm.rows (); \ int dm_nc = dm.cols (); \ \ if (m_nr != dm_nr || m_nc != dm_nc) \ gripe_nonconformant (#OP, m_nr, m_nc, dm_nr, dm_nc); \ else \ { \ r.resize (m_nr, m_nc); \ \ if (m_nr > 0 && m_nc > 0) \ { \ r = R (m); \ \ int len = dm.length (); \ \ for (int i = 0; i < len; i++) \ r.elem(i, i) OPEQ dm.elem(i, i); \ } \ } \ \ return r; \ } #define MDM_MULTIPLY_OP(R, M, DM, R_ZERO) \ R \ operator * (const M& m, const DM& dm) \ { \ R r; \ \ int m_nr = m.rows (); \ int m_nc = m.cols (); \ \ int dm_nr = dm.rows (); \ int dm_nc = dm.cols (); \ \ if (m_nc != dm_nr) \ gripe_nonconformant ("operator *", m_nr, m_nc, dm_nr, dm_nc); \ else \ { \ r.resize (m_nr, dm_nc, R_ZERO); \ \ if (m_nr > 0 && m_nc > 0 && dm_nc > 0) \ { \ int len = dm.length (); \ \ for (int j = 0; j < len; j++) \ { \ if (dm.elem(j, j) == 1.0) \ { \ for (int i = 0; i < m_nr; i++) \ r.elem(i, j) = m.elem(i, j); \ } \ else \ { \ for (int i = 0; i < m_nr; i++) \ r.elem(i, j) = dm.elem(j, j) * m.elem(i, j); \ } \ } \ } \ } \ \ return r; \ } #define MDM_BIN_OPS(R, M, DM, R_ZERO) \ MDM_BIN_OP (R, operator +, M, DM, +=) \ MDM_BIN_OP (R, operator -, M, DM, -=) \ MDM_MULTIPLY_OP (R, M, DM, R_ZERO) #define MDM_OP_DECLS(R, M, DM) \ MDM_BIN_OP_DECLS(R, M, DM) // diagonal matrix by matrix operations. #define DMM_BIN_OP_DECLS(R, DM, M) \ BIN_OP_DECL (R, operator +, DM, M); \ BIN_OP_DECL (R, operator -, DM, M); \ BIN_OP_DECL (R, operator *, DM, M); #define DMM_BIN_OP(R, OP, DM, M, OPEQ, PREOP) \ R \ OP (const DM& dm, const M& m) \ { \ R r; \ \ int dm_nr = dm.rows (); \ int dm_nc = dm.cols (); \ \ int m_nr = m.rows (); \ int m_nc = m.cols (); \ \ if (dm_nr != m_nr || dm_nc != m_nc) \ gripe_nonconformant (#OP, dm_nr, dm_nc, m_nr, m_nc); \ else \ { \ if (m_nr > 0 && m_nc > 0) \ { \ r = R (PREOP m); \ \ int len = dm.length (); \ \ for (int i = 0; i < len; i++) \ r.elem(i, i) OPEQ dm.elem(i, i); \ } \ else \ r.resize (m_nr, m_nc); \ } \ \ return r; \ } #define DMM_MULTIPLY_OP(R, DM, M, R_ZERO) \ R \ operator * (const DM& dm, const M& m) \ { \ R r; \ \ int dm_nr = dm.rows (); \ int dm_nc = dm.cols (); \ \ int m_nr = m.rows (); \ int m_nc = m.cols (); \ \ if (dm_nc != m_nr) \ gripe_nonconformant ("operator *", dm_nr, dm_nc, m_nr, m_nc); \ else \ { \ r.resize (dm_nr, m_nc, R_ZERO); \ \ if (dm_nr > 0 && dm_nc > 0 && m_nc > 0) \ { \ int len = dm.length (); \ \ for (int i = 0; i < len; i++) \ { \ if (dm.elem(i, i) == 1.0) \ { \ for (int j = 0; j < m_nc; j++) \ r.elem(i, j) = m.elem(i, j); \ } \ else \ { \ for (int j = 0; j < m_nc; j++) \ r.elem(i, j) = dm.elem(i, i) * m.elem(i, j); \ } \ } \ } \ } \ \ return r; \ } #define DMM_BIN_OPS(R, DM, M, R_ZERO) \ DMM_BIN_OP (R, operator +, DM, M, +=, ) \ DMM_BIN_OP (R, operator -, DM, M, +=, -) \ DMM_MULTIPLY_OP (R, DM, M, R_ZERO) #define DMM_OP_DECLS(R, DM, M) \ DMM_BIN_OP_DECLS(R, DM, M) // diagonal matrix by diagonal matrix operations. #define DMDM_BIN_OP_DECLS(R, DM1, DM2) \ BIN_OP_DECL (R, operator +, DM1, DM2); \ BIN_OP_DECL (R, operator -, DM1, DM2); \ BIN_OP_DECL (R, product, DM1, DM2); #define DMDM_BIN_OP(R, OP, DM1, DM2, F) \ R \ OP (const DM1& dm1, const DM2& dm2) \ { \ R r; \ \ int dm1_nr = dm1.rows (); \ int dm1_nc = dm1.cols (); \ \ int dm2_nr = dm2.rows (); \ int dm2_nc = dm2.cols (); \ \ if (dm1_nr != dm2_nr || dm1_nc != dm2_nc) \ gripe_nonconformant (#OP, dm1_nr, dm1_nc, dm2_nr, dm2_nc); \ else \ { \ r.resize (dm1_nr, dm1_nc); \ \ if (dm1_nr > 0 && dm1_nc > 0) \ F ## _vv (r.fortran_vec (), dm1.data (), dm2.data (), \ dm1_nr * dm2_nc); \ } \ \ return r; \ } #define DMDM_BIN_OPS(R, DM1, DM2) \ DMDM_BIN_OP (R, operator +, DM1, DM2, mx_inline_add) \ DMDM_BIN_OP (R, operator -, DM1, DM2, mx_inline_subtract) \ DMDM_BIN_OP (R, product, DM1, DM2, mx_inline_multiply) #define DMDM_OP_DECLS(R, DM1, DM2) \ DMDM_BIN_OP_DECLS (R, DM1, DM2) #endif /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */