Mercurial > hg > octave-nkf
view scripts/control/base/lqg.m @ 5536:f16c05db6250 ss-2-9-4
[project @ 2005-11-11 19:53:51 by jwe]
author | jwe |
---|---|
date | Fri, 11 Nov 2005 19:53:52 +0000 |
parents | ec8c33dcd1bf |
children | 2618a0750ae6 |
line wrap: on
line source
## Copyright (C) 1996, 1997 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{k}, @var{q1}, @var{p1}, @var{ee}, @var{er}] =} lqg (@var{sys}, @var{sigw}, @var{sigv}, @var{q}, @var{r}, @var{in_idx}) ## Design a linear-quadratic-gaussian optimal controller for the system ## @example ## dx/dt = A x + B u + G w [w]=N(0,[Sigw 0 ]) ## y = C x + v [v] ( 0 Sigv ]) ## @end example ## or ## @example ## x(k+1) = A x(k) + B u(k) + G w(k) [w]=N(0,[Sigw 0 ]) ## y(k) = C x(k) + v(k) [v] ( 0 Sigv ]) ## @end example ## ## @strong{Inputs} ## @table @var ## @item sys ## system data structure ## @item sigw ## @itemx sigv ## intensities of independent Gaussian noise processes (as above) ## @item q ## @itemx r ## state, control weighting respectively. Control @acronym{ARE} is ## @item in_idx ## names or indices of controlled inputs (see @command{sysidx}, @command{cellidx}) ## ## default: last dim(R) inputs are assumed to be controlled inputs, all ## others are assumed to be noise inputs. ## @end table ## @strong{Outputs} ## @table @var ## @item k ## system data structure format @acronym{LQG} optimal controller (Obtain A, B, C ## matrices with @command{sys2ss}, @command{sys2tf}, or @command{sys2zp} as ## appropriate). ## @item p1 ## Solution of control (state feedback) algebraic Riccati equation. ## @item q1 ## Solution of estimation algebraic Riccati equation. ## @item ee ## Estimator poles. ## @item es ## Controller poles. ## @end table ## @end deftypefn ## ## @seealso{h2syn, lqe, and lqr} ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Created: August 1995 ## revised for new system format August 1996 function [K, Q1, P1, Ee, Er] = lqg (sys, Sigw, Sigv, Q, R, input_list) if ( (nargin < 5) | (nargin > 6)) usage("[K,Q1,P1,Ee,Er] = lqg(sys,Sigw, Sigv,Q,R{,input_list})"); elseif(!isstruct(sys) ) error("sys must be in system data structure"); endif DIG = is_digital(sys); [A,B,C,D,tsam,n,nz,stname,inname,outname] = sys2ss(sys); [n,nz,nin,nout] = sysdimensions(sys); if(nargin == 5) ## construct default input_list input_list = (columns(Sigw)+1):nin; endif if( !(n+nz) ) error(["lqg: 0 states in system"]); elseif(nin != columns(Sigw)+ columns(R)) error(["lqg: sys has ",num2str(nin)," inputs, dim(Sigw)=", ... num2str(columns(Sigw)),", dim(u)=",num2str(columns(R))]) elseif(nout != columns(Sigv)) error(["lqg: sys has ",num2str(nout)," outputs, dim(Sigv)=", ... num2str(columns(Sigv)),")"]) endif ## check for names of signals if(is_signal_list(input_list) | ischar(input_list)) input_list = sysidx(sys,"in",input_list); endif if(length(input_list) != columns(R)) error(["lqg: length(input_list)=",num2str(length(input_list)), ... ", columns(R)=", num2str(columns(R))]); endif varname = {"Sigw","Sigv","Q","R"}; for kk=1:length(varname); eval(sprintf("chk = issquare(%s);",varname{kk})); if(! chk ) error("lqg: %s is not square",varname{kk}); endif endfor ## permute (if need be) if(nargin == 6) all_inputs = sysreorder(nin,input_list); B = B(:,all_inputs); inname = inname(all_inputs); endif ## put parameters into correct variables m1 = columns(Sigw); m2 = m1+1; G = B(:,1:m1); B = B(:,m2:nin); ## now we can just do the design; call dlqr and dlqe, since all matrices ## are not given in Cholesky factor form (as in h2syn case) if(DIG) [Ks, P1, Er] = dlqr(A,B,Q,R); [Ke, Q1, jnk, Ee] = dlqe(A,G,C,Sigw,Sigv); else [Ks, P1, Er] = lqr(A,B,Q,R); [Ke, Q1, Ee] = lqe(A,G,C,Sigw,Sigv); endif Ac = A - Ke*C - B*Ks; Bc = Ke; Cc = -Ks; Dc = zeros(rows(Cc),columns(Bc)); ## fix state names stname1 = strappend(stname,"_e"); ## fix controller output names outname1 = strappend(inname(m2:nin),"_K"); ## fix controller input names inname1 = strappend(outname,"_K"); if(DIG) K = ss(Ac,Bc,Cc,Dc,tsam,n,nz,stname1,inname1,outname1,1:rows(Cc)); else K = ss(Ac,Bc,Cc,Dc,tsam,n,nz,stname,inname1,outname1); endif endfunction