Mercurial > hg > octave-nkf
view scripts/specfun/legendre.m @ 5915:b2e1be30c8e9 ss-2-9-7
[project @ 2006-07-28 18:08:56 by jwe]
author | jwe |
---|---|
date | Fri, 28 Jul 2006 18:08:56 +0000 |
parents | 1fe78adb91bc |
children | 8b0cfeb06365 |
line wrap: on
line source
## Copyright (C) 2000 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{L} =} legendre (@var{n}, @var{X}) ## ## Legendre Function of degree n and order m ## where all values for m = 0..@var{n} are returned. ## @var{n} must be a scalar in the range [0..255]. ## The return value has one dimension more than @var{x}. ## ## @example ## The Legendre Function of degree n and order m ## ## @group ## m m 2 m/2 d^m ## P(x) = (-1) * (1-x ) * ---- P (x) ## n dx^m n ## @end group ## ## with: ## Legendre Polynom of degree n ## ## @group ## 1 d^n 2 n ## P (x) = ------ [----(x - 1) ] ## n 2^n n! dx^n ## @end group ## ## legendre(3,[-1.0 -0.9 -0.8]) returns the matrix ## ## @group ## x | -1.0 | -0.9 | -0.8 ## ------------------------------------ ## m=0 | -1.00000 | -0.47250 | -0.08000 ## m=1 | 0.00000 | -1.99420 | -1.98000 ## m=2 | 0.00000 | -2.56500 | -4.32000 ## m=3 | 0.00000 | -1.24229 | -3.24000 ## @end group ## @end example ## @end deftypefn ## FIXME Add Schmidt semi-normalized and fully normalized legendre functions ## Author: Kai Habel <kai.habel@gmx.de> function L = legendre (n, x) warning ("legendre is unstable for higher orders"); if (nargin != 2) print_usage (); endif if (! isscalar (n) || n < 0 || n > 255 || n != fix (n)) error ("n must be a integer between 0 and 255]"); endif if (! isvector (x) || any (x < -1 || x > 1)) error ("x must be vector in range -1 <= x <= 1"); endif if (n == 0) L = ones (size (x)); elseif (n == 1) L = [x; -sqrt(1 - x .^ 2)]; else i = 0:n; a = (-1) .^ i .* bincoeff (n, i); p = [a; zeros(size (a))]; p = p(:); p(length (p)) = []; #p contains the polynom (x^2-1)^n #now create a vector with 1/(2.^n*n!)*(d/dx).^n d = [((n + rem(n, 2)):-1:(rem (n, 2) + 1)); 2 * ones(fix (n / 2), n)]; d = cumsum (d); d = fliplr (prod (d')); d = [d; zeros(1, length (d))]; d = d(1:n + 1) ./ (2 ^ n *prod (1:n)); Lp = d' .* p(1:length (d)); #Lp contains the Legendre Polynom of degree n # now create a polynom matrix with d/dx^m for m=0..n d2 = flipud (triu (ones (n))); d2 = cumsum (d2); d2 = fliplr (cumprod (flipud (d2))); d3 = fliplr (triu (ones (n + 1))); d3(2:n + 1, 1:n) = d2; # multiply for each m (d/dx)^m with Lp(n,x) # and evaluate at x Y = zeros(n + 1, length (x)); [dr, dc] = size (d3); for m = 0:dr - 1 Y(m + 1, :) = polyval (d3(m + 1, 1:(dc - m)) .* Lp(1:(dc - m))', x)(:)'; endfor # calculate (-1)^m*(1-x^2)^(m/2) for m=0..n at x # and multiply with (d/dx)^m(Pnx) l = length (x); X = kron ((1 - x(:) .^ 2)', ones (n + 1, 1)); M = kron ((0:n)', ones (1, l)); L = X .^ (M / 2) .* (-1) .^ M .* Y; endif endfunction %!test %! result=legendre(3,[-1.0 -0.9 -0.8]); %! expected = [ %! -1.00000 -0.47250 -0.08000 %! 0.00000 -1.99420 -1.98000 %! 0.00000 -2.56500 -4.32000 %! 0.00000 -1.24229 -3.24000 %! ]; %! assert(result,expected,1e-5);