Mercurial > hg > octave-nkf
view scripts/control/util/zgscal.m @ 5967:d542d9197839 ss-2-9-8
[project @ 2006-08-24 21:24:53 by jwe]
author | jwe |
---|---|
date | Thu, 24 Aug 2006 21:27:41 +0000 |
parents | 4c8a2e4e0717 |
children | 93c65f2a5668 |
line wrap: on
line source
## Copyright (C) 1996, 1998 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} =} zgscal (@var{f}, @var{z}, @var{n}, @var{m}, @var{p}) ## Generalized conjugate gradient iteration to ## solve zero-computation generalized eigenvalue problem balancing equation ## @math{fx=z}; called by @command{zgepbal}. ## @end deftypefn ## References: ## ZGEP: Hodel, "Computation of Zeros with Balancing," 1992, submitted to LAA ## Generalized CG: Golub and Van Loan, "Matrix Computations, 2nd ed" 1989 ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Created: July 24, 1992 ## Conversion to Octave R. Bruce Tenison July 3, 1994 function x = zgscal (a, b, c, d, z, n, m, p) ## initialize parameters: ## Givens rotations, diagonalized 2x2 block of F, gcg vector initialization nmp = n+m+p; ## x_0 = x_{-1} = 0, r_0 = z x = zeros(nmp,1); xk1 = x; xk2 = x; rk1 = z; k = 0; ## construct balancing least squares problem F = eye(nmp); for kk=1:nmp F(1:nmp,kk) = zgfmul(a,b,c,d,F(:,kk)); endfor [U,H,k1] = krylov(F,z,nmp,1e-12,1); if(!issquare(H)) if(columns(H) != k1) error("zgscal(tzero): k1=%d, columns(H)=%d",k1,columns(H)); elseif(rows(H) != k1+1) error("zgscal: k1=%d, rows(H) = %d",k1,rows(H)); elseif ( norm(H(k1+1,:)) > 1e-12*norm(H,"inf") ) zgscal_last_row_of_H = H(k1+1,:) error("zgscal: last row of H nonzero (norm(H)=%e)",norm(H,"inf")) endif H = H(1:k1,1:k1); U = U(:,1:k1); endif ## tridiagonal H can still be rank deficient, so do permuted qr ## factorization [qq,rr,pp] = qr(H); # H = qq*rr*pp' nn = rank(rr); qq = qq(:,1:nn); rr = rr(1:nn,:); # rr may not be square, but "\" does least xx = U*pp*(rr\qq'*(U'*z)); # squares solution, so this works ## xx1 = pinv(F)*z; ## zgscal_x_xx1_err = [xx,xx1,xx-xx1] return; ## the rest of this is left from the original zgscal; ## I've had some numerical problems with the GCG algorithm, ## so for now I'm solving it with the krylov routine. ## initialize residual error norm rnorm = norm(rk1,1); xnorm = 0; fnorm = 1e-12 * norm([a,b;c,d],1); ## dummy defines for MATHTOOLS compiler gamk2 = 0; omega1 = 0; ztmz2 = 0; ## do until small changes to x len_x = length(x); while ((k < 2*len_x) & (xnorm> 0.5) & (rnorm>fnorm))|(k == 0) k = k+1; ## solve F_d z_{k-1} = r_{k-1} zk1= zgfslv(n,m,p,rk1); ## Generalized CG iteration ## gamk1 = (zk1'*F_d*zk1)/(zk1'*F*zk1); ztMz1 = zk1'*rk1; gamk1 = ztMz1/(zk1'*zgfmul(a,b,c,d,zk1)); if(rem(k,len_x) == 1) omega = 1; else omega = 1/(1-gamk1*ztMz1/(gamk2*omega1*ztmz2)); endif ## store x in xk2 to save space xk2 = xk2 + omega*(gamk1*zk1 + xk1 - xk2); ## compute new residual error: rk = z - F xk, check end conditions rk1 = z - zgfmul(a,b,c,d,xk2); rnorm = norm(rk1); xnorm = max(abs(xk1 - xk2)); ## printf("zgscal: k=%d, gamk1=%e, gamk2=%e, \nztMz1=%e ztmz2=%e\n", ... ## k,gamk1, gamk2, ztMz1, ztmz2); ## xk2_1_zk1 = [xk2 xk1 zk1] ## ABCD = [a,b;c,d] ## prompt ## get ready for next iteration gamk2 = gamk1; omega1 = omega; ztmz2 = ztMz1; [xk1,xk2] = swap(xk1,xk2); endwhile x = xk2; ## check convergence if (xnorm> 0.5 & rnorm>fnorm) warning("zgscal(tzero): GCG iteration failed; solving with pinv"); ## perform brute force least squares; construct F Am = eye(nmp); for ii=1:nmp Am(:,ii) = zgfmul(a,b,c,d,Am(:,ii)); endfor ## now solve with qr factorization x = pinv(Am)*z; endif endfunction