Mercurial > hg > octave-nkf
view scripts/sparse/pcg.m @ 5967:d542d9197839 ss-2-9-8
[project @ 2006-08-24 21:24:53 by jwe]
author | jwe |
---|---|
date | Thu, 24 Aug 2006 21:27:41 +0000 |
parents | 376e02b2ce70 |
children | 2c85044aa63f |
line wrap: on
line source
## Copyright (C) 2004 Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl> ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} =} pcg (@var{a}, @var{b}, @var{tol}, @var{maxit}, @var{m}, @var{x0}, @dots{}) ## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@dots{}) ## ## Solves the linear system of equations @code{@var{a} * @var{x} = ## @var{b}} by means of the Preconditioned Conjugate Gradient iterative ## method. The input arguments are ## ## @itemize ## @item ## @var{a} can be either a square (preferably sparse) matrix or a ## function handle, inline function or string containing the name ## of a function which computes @code{@var{a} * @var{x}}. In principle ## @var{a} should be symmetric and positive definite; if @code{pcg} ## finds @var{a} to not be positive definite, you will get a warning ## message and the @var{flag} output parameter will be set. ## ## @item ## @var{b} is the right hand side vector. ## ## @item ## @var{tol} is the required relative tolerance for the residual error, ## @code{@var{b} - @var{a} * @var{x}}. The iteration stops if @code{norm ## (@var{b} - @var{a} * @var{x}) <= @var{tol} * norm (@var{b} - @var{a} * ## @var{x0})}. If @var{tol} is empty or is omitted, the function sets ## @code{@var{tol} = 1e-6} by default. ## ## @item ## @var{maxit} is the maximum allowable number of iterations; if ## @code{[]} is supplied for @code{maxit}, or @code{pcg} has less ## arguments, a default value equal to 20 is used. ## ## @item ## @var{m} is the (left) preconditioning matrix, so that the iteration is ## (theoretically) equivalent to solving by @code{pcg} @code{@var{P} * ## @var{x} = @var{m} \ @var{b}}, with @code{@var{P} = @var{m} \ @var{a}}. ## Note that a proper choice of the preconditioner may dramatically ## improve the overall performance of the method. Instead of matrix ## @var{m}, the user may pass a function which returns the results of ## applying the inverse of @var{m} to a vector (usually this is the ## preferred way of using the preconditioner). If @code{[]} is supplied ## for @var{m}, or @var{m} is omitted, no preconditioning is applied. ## ## @item ## @var{x0} is the initial guess. If @var{x0} is empty or omitted, the ## function sets @var{x0} to a zero vector by default. ## @end itemize ## ## The arguments which follow @var{x0} are treated as parameters, and ## passed in a proper way to any of the functions (@var{a} or @var{m}) ## which are passed to @code{pcg}. See the examples below for further ## details. The output arguments are ## ## @itemize ## @item ## @var{x} is the computed approximation to the solution of ## @code{@var{a} * @var{x} = @var{b}}. ## ## @item ## @var{flag} reports on the convergence. @code{@var{flag} = 0} means ## the solution converged and the tolerance criterion given by @var{tol} ## is satisfied. @code{@var{flag} = 1} means that the @var{maxit} limit ## for the iteration count was reached. @code{@var{flag} = 3} reports that ## the (preconditioned) matrix was found not positive definite. ## ## @item ## @var{relres} is the ratio of the final residual to its initial value, ## measured in the Euclidean norm. ## ## @item ## @var{iter} is the actual number of iterations performed. ## ## @item ## @var{resvec} describes the convergence history of the method. ## @code{@var{resvec} (i,1)} is the Euclidean norm of the residual, and ## @code{@var{resvec} (i,2)} is the preconditioned residual norm, ## after the (@var{i}-1)-th iteration, @code{@var{i} = ## 1,2,...@var{iter}+1}. The preconditioned residual norm is defined as ## @code{norm (@var{r}) ^ 2 = @var{r}' * (@var{m} \ @var{r})} where ## @code{@var{r} = @var{b} - @var{a} * @var{x}}, see also the ## description of @var{m}. If @var{eigest} is not required, only ## @code{@var{resvec} (:,1)} is returned. ## ## @item ## @var{eigest} returns the estimate for the smallest @code{@var{eigest} ## (1)} and largest @code{@var{eigest} (2)} eigenvalues of the ## preconditioned matrix @code{@var{P} = @var{m} \ @var{a}}. In ## particular, if no preconditioning is used, the extimates for the ## extreme eigenvalues of @var{a} are returned. @code{@var{eigest} (1)} ## is an overestimate and @code{@var{eigest} (2)} is an underestimate, ## so that @code{@var{eigest} (2) / @var{eigest} (1)} is a lower bound ## for @code{cond (@var{P}, 2)}, which nevertheless in the limit should ## theoretically be equal to the actual value of the condition number. ## The method which computes @var{eigest} works only for symmetric positive ## definite @var{a} and @var{m}, and the user is responsible for ## verifying this assumption. ## @end itemize ## ## Let us consider a trivial problem with a diagonal matrix (we exploit the ## sparsity of A) ## ## @example ## @group ## N = 10; ## A = diag([1:N]); A = sparse(A); ## b = rand(N,1); ## @end group ## @end example ## ## @sc{Example 1:} Simplest use of @code{pcg} ## ## @example ## x = pcg(A,b) ## @end example ## ## @sc{Example 2:} @code{pcg} with a function which computes ## @code{@var{a} * @var{x}} ## ## @example ## @group ## function y = applyA(x) ## y = [1:N]'.*x; ## endfunction ## ## x = pcg('applyA',b) ## @end group ## @end example ## ## @sc{Example 3:} Preconditioned iteration, with full diagnostics. The ## preconditioner (quite strange, because even the original matrix ## @var{a} is trivial) is defined as a function ## ## @example ## @group ## function y = applyM(x) ## K = floor(length(x)-2); ## y = x; ## y(1:K) = x(1:K)./[1:K]'; ## endfunction ## ## [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],[],'applyM') ## semilogy([1:iter+1], resvec); ## @end group ## @end example ## ## @sc{Example 4:} Finally, a preconditioner which depends on a ## parameter @var{k}. ## ## @example ## @group ## function y = applyM(x, varargin) ## K = varargin@{1@}; ## y = x; y(1:K) = x(1:K)./[1:K]'; ## endfuntion ## ## [x, flag, relres, iter, resvec, eigest] = ... ## pcg(A,b,[],[],'applyM',[],3) ## @end group ## @end example ## ## @sc{References} ## ## [1] C.T.Kelley, 'Iterative methods for linear and nonlinear equations', ## SIAM, 1995 (the base PCG algorithm) ## ## [2] Y.Saad, 'Iterative methods for sparse linear systems', PWS 1996 ## (condition number estimate from PCG) Revised version of this book is ## available online at http://www-users.cs.umn.edu/~saad/books.html ## ## ## @seealso{sparse, pcr} ## @end deftypefn ## Author: Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl> function [x, flag, relres, iter, resvec, eigest] = pcg (A, b, tol, maxit, M, x0, varargin) if (nargin < 6 || isempty (x0)) x = zeros (size (b)); else x = x0; endif if (nargin < 5) M = []; endif if (nargin < 4 || isempty (maxit)) maxit = min (size (b, 1), 20); endif maxit += 2; if (nargin < 3 || isempty (tol)) tol = 1e-6; endif preconditioned_residual_out = false; if (nargout > 5) T = zeros (maxit, maxit); preconditioned_residual_out = true; endif matrix_positive_definite = true; # assume A is positive definite p = zeros (size (b)); oldtau = 1; if (isnumeric (A)) # is A a matrix? r = b - A*x; else # then A should be a function! r = b - feval (A, x, varargin{:}); endif resvec(1,1) = norm (r); alpha = 1; iter = 2; while (resvec(iter-1,1) > tol*resvec(1,1) && iter < maxit) if (isnumeric (M)) # is M a matrix? if (isempty (M)) # if M is empty, use no precond z = r; else # otherwise, apply the precond z = M \ r; endif else # then M should be a function! z = feval (M, r, varargin{:}); endif tau = z' * r; resvec(iter-1,2) = sqrt (tau); beta = tau / oldtau; oldtau = tau; p = z + beta*p; if (isnumeric (A)) # is A a matrix? w = A * p; else # then A should be a function! w = feval (A, p, varargin{:}); endif oldalpha = alpha; # needed only for eigest alpha = tau / (p'*w); if (alpha <= 0.0) # negative matrix? matrix_positive_definite = false; endif x += alpha*p; r -= alpha*w; if (nargout > 5 && iter > 2) T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ... [1 sqrt(beta); sqrt(beta) beta]./oldalpha; ## EVS = eig(T(2:iter-1,2:iter-1)); ## fprintf(stderr,"PCG condest: %g (iteration: %d)\n", max(EVS)/min(EVS),iter); endif resvec(iter,1) = norm (r); iter++; endwhile if (nargout > 5) if (matrix_positive_definite) if (iter > 3) T = T(2:iter-2,2:iter-2); l = eig(T); eigest = [min(l), max(l)]; ## fprintf (stderr, "PCG condest: %g\n", eigest(2)/eigest(1)); else eigest = [NaN, NaN]; warning ("PCG: eigenvalue estimate failed: iteration converged too fast."); endif else eigest = [NaN, NaN]; endif ## apply the preconditioner once more and finish with the precond ## residual if (isnumeric (M)) # is M a matrix? if (isempty (M)) # if M is empty, use no precond z = r; else # otherwise, apply the precond z = M \ r; endif else # then M should be a function! z = feval (M, r, varargin{:}); endif resvec(iter-1,2) = sqrt (r'*z); else resvec = resvec(:,1); endif flag = 0; relres = resvec(iter-1,1)./resvec(1,1); iter -= 2; if (iter >= maxit-2) flag = 1; if (nargout < 2) warning ("PCG: maximum number of iterations (%d) reached\n", iter); warning ("The initial residual norm was reduced %g times.\n", 1.0/relres); endif elseif (nargout < 2) fprintf (stderr, "PCG: converged in %d iterations. ", iter); fprintf (stderr, "The initial residual norm was reduced %g times.\n",... 1.0/relres); endif if (! matrix_positive_definite) flag = 3; if (nargout < 2) warning ("PCG: matrix not positive definite?\n"); endif endif endfunction %!demo %! %! # Simplest usage of pcg (see also 'help pcg') %! %! N = 10; %! A = diag([1:N]); b = rand(N,1); y = A\b; #y is the true solution %! x = pcg(A,b); %! printf('The solution relative error is %g\n', norm(x-y)/norm(y)); %! %! # You shouldn't be afraid if pcg issues some warning messages in this %! # example: watch out in the second example, why it takes N iterations %! # of pcg to converge to (a very accurate, by the way) solution %!demo %! %! # Full output from pcg, except for the eigenvalue estimates %! # We use this output to plot the convergence history %! %! N = 10; %! A = diag([1:N]); b = rand(N,1); X = A\b; #X is the true solution %! [x, flag, relres, iter, resvec] = pcg(A,b); %! printf('The solution relative error is %g\n', norm(x-X)/norm(X)); %! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||/||b||)'); %! semilogy([0:iter],resvec/resvec(1),'o-g;relative residual;'); %!demo %! %! # Full output from pcg, including the eigenvalue estimates %! # Hilbert matrix is extremely ill conditioned, so pcg WILL have problems %! %! N = 10; %! A = hilb(N); b = rand(N,1); X = A\b; #X is the true solution %! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],200); %! printf('The solution relative error is %g\n', norm(x-X)/norm(X)); %! printf('Condition number estimate is %g\n', eigest(2)/eigest(1)); %! printf('Actual condition number is %g\n', cond(A)); %! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); %! semilogy([0:iter],resvec,['o-g;absolute residual;';'+-r;absolute preconditioned residual;']); %!demo %! %! # Full output from pcg, including the eigenvalue estimates %! # We use the 1-D Laplacian matrix for A, and cond(A) = O(N^2) %! # and that's the reasone we need some preconditioner; here we take %! # a very simple and not powerful Jacobi preconditioner, %! # which is the diagonal of A %! %! N = 100; %! A = zeros(N,N); %! for i=1:N-1 # form 1-D Laplacian matrix %! A(i:i+1,i:i+1) = [2 -1; -1 2]; %! endfor %! b = rand(N,1); X = A\b; #X is the true solution %! maxit = 80; %! printf('System condition number is %g\n',cond(A)); %! # No preconditioner: the convergence is very slow! %! %! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit); %! printf('System condition number estimate is %g\n',eigest(2)/eigest(1)); %! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); %! semilogy([0:iter],resvec(:,1),'o-g;NO preconditioning: absolute residual;'); %! %! pause(1); %! # Test Jacobi preconditioner: it will not help much!!! %! %! M = diag(diag(A)); # Jacobi preconditioner %! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit,M); %! printf('JACOBI preconditioned system condition number estimate is %g\n',eigest(2)/eigest(1)); %! hold on; %! semilogy([0:iter],resvec(:,1),'o-r;JACOBI preconditioner: absolute residual;'); %! %! pause(1); %! # Test nonoverlapping block Jacobi preconditioner: it will help much! %! %! M = zeros(N,N);k=4 %! for i=1:k:N # form 1-D Laplacian matrix %! M(i:i+k-1,i:i+k-1) = A(i:i+k-1,i:i+k-1); %! endfor %! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit,M); %! printf('BLOCK JACOBI preconditioned system condition number estimate is %g\n',eigest(2)/eigest(1)); %! semilogy([0:iter],resvec(:,1),'o-b;BLOCK JACOBI preconditioner: absolute residual;'); %! hold off; %!test %! %! #solve small diagonal system %! %! N = 10; %! A = diag([1:N]); b = rand(N,1); X = A\b; #X is the true solution %! [x, flag] = pcg(A,b,[],N+1); %! assert(norm(x-X)/norm(X),0,1e-10); %! assert(flag,0); %! %!test %! %! #solve small indefinite diagonal system %! #despite A is indefinite, the iteration continues and converges %! #indefiniteness of A is detected %! %! N = 10; %! A = diag([1:N].*(-ones(1,N).^2)); b = rand(N,1); X = A\b; #X is the true solution %! [x, flag] = pcg(A,b,[],N+1); %! assert(norm(x-X)/norm(X),0,1e-10); %! assert(flag,3); %! %!test %! %! #solve tridiagonal system, do not converge in default 20 iterations %! %! N = 100; %! A = zeros(N,N); %! for i=1:N-1 # form 1-D Laplacian matrix %! A(i:i+1,i:i+1) = [2 -1; -1 2]; %! endfor %! b = ones(N,1); X = A\b; #X is the true solution %! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,1e-12); %! assert(flag); %! assert(relres>1.0); %! assert(iter,20); #should perform max allowable default number of iterations %! %!test %! %! #solve tridiagonal system with 'prefect' preconditioner %! #converges in one iteration, so the eigest does not work %! #and issues a warning %! %! N = 100; %! A = zeros(N,N); %! for i=1:N-1 # form 1-D Laplacian matrix %! A(i:i+1,i:i+1) = [2 -1; -1 2]; %! endfor %! b = ones(N,1); X = A\b; #X is the true solution %! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],[],A,b); %! assert(norm(x-X)/norm(X),0,1e-6); %! assert(flag,0); %! assert(iter,1); #should converge in one iteration %! assert(isnan(eigest),isnan([NaN NaN])); %!