Mercurial > hg > octave-nkf
view liboctave/fCmplxCHOL.cc @ 7948:af10baa63915 ss-3-1-50
3.1.50 snapshot
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 18 Jul 2008 17:42:48 -0400 |
parents | 82be108cc558 |
children | 25bc2d31e1bf |
line wrap: on
line source
/* Copyright (C) 1994, 1995, 1996, 1997, 2002, 2003, 2004, 2005, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ // updating/downdating by Jaroslav Hajek 2008 #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <vector> #include "fMatrix.h" #include "fRowVector.h" #include "fCmplxCHOL.h" #include "f77-fcn.h" #include "lo-error.h" extern "C" { F77_RET_T F77_FUNC (cpotrf, CPOTRF) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, FloatComplex*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (cpotri, CPOTRI) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, FloatComplex*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (cpocon, CPOCON) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, FloatComplex*, const octave_idx_type&, const float&, float&, FloatComplex*, float*, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (cch1up, CCH1UP) (const octave_idx_type&, FloatComplex*, FloatComplex*, float*); F77_RET_T F77_FUNC (cch1dn, CCH1DN) (const octave_idx_type&, FloatComplex*, FloatComplex*, float*, octave_idx_type&); F77_RET_T F77_FUNC (cqrshc, CQRSHC) (const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, FloatComplex*, FloatComplex*, const octave_idx_type&, const octave_idx_type&); F77_RET_T F77_FUNC (cchinx, CCHINX) (const octave_idx_type&, const FloatComplex*, FloatComplex*, const octave_idx_type&, const FloatComplex*, octave_idx_type&); F77_RET_T F77_FUNC (cchdex, CCHDEX) (const octave_idx_type&, const FloatComplex*, FloatComplex*, const octave_idx_type&); } octave_idx_type FloatComplexCHOL::init (const FloatComplexMatrix& a, bool calc_cond) { octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); if (a_nr != a_nc) { (*current_liboctave_error_handler) ("FloatComplexCHOL requires square matrix"); return -1; } octave_idx_type n = a_nc; octave_idx_type info; chol_mat = a; FloatComplex *h = chol_mat.fortran_vec (); // Calculate the norm of the matrix, for later use. float anorm = 0; if (calc_cond) anorm = chol_mat.abs().sum().row(static_cast<octave_idx_type>(0)).max(); F77_XFCN (cpotrf, CPOTRF, (F77_CONST_CHAR_ARG2 ("U", 1), n, h, n, info F77_CHAR_ARG_LEN (1))); xrcond = 0.0; if (info != 0) info = -1; else if (calc_cond) { octave_idx_type cpocon_info = 0; // Now calculate the condition number for non-singular matrix. Array<FloatComplex> z (2*n); FloatComplex *pz = z.fortran_vec (); Array<float> rz (n); float *prz = rz.fortran_vec (); F77_XFCN (cpocon, CPOCON, (F77_CONST_CHAR_ARG2 ("U", 1), n, h, n, anorm, xrcond, pz, prz, cpocon_info F77_CHAR_ARG_LEN (1))); if (cpocon_info != 0) info = -1; } else { // If someone thinks of a more graceful way of doing this (or // faster for that matter :-)), please let me know! if (n > 1) for (octave_idx_type j = 0; j < a_nc; j++) for (octave_idx_type i = j+1; i < a_nr; i++) chol_mat.xelem (i, j) = 0.0; } return info; } static FloatComplexMatrix chol2inv_internal (const FloatComplexMatrix& r) { FloatComplexMatrix retval; octave_idx_type r_nr = r.rows (); octave_idx_type r_nc = r.cols (); if (r_nr == r_nc) { octave_idx_type n = r_nc; octave_idx_type info; FloatComplexMatrix tmp = r; F77_XFCN (cpotri, CPOTRI, (F77_CONST_CHAR_ARG2 ("U", 1), n, tmp.fortran_vec (), n, info F77_CHAR_ARG_LEN (1))); // If someone thinks of a more graceful way of doing this (or // faster for that matter :-)), please let me know! if (n > 1) for (octave_idx_type j = 0; j < r_nc; j++) for (octave_idx_type i = j+1; i < r_nr; i++) tmp.xelem (i, j) = std::conj (tmp.xelem (j, i)); retval = tmp; } else (*current_liboctave_error_handler) ("chol2inv requires square matrix"); return retval; } // Compute the inverse of a matrix using the Cholesky factorization. FloatComplexMatrix FloatComplexCHOL::inverse (void) const { return chol2inv_internal (chol_mat); } void FloatComplexCHOL::set (const FloatComplexMatrix& R) { if (R.is_square ()) chol_mat = R; else (*current_liboctave_error_handler) ("CHOL requires square matrix"); } void FloatComplexCHOL::update (const FloatComplexMatrix& u) { octave_idx_type n = chol_mat.rows (); if (u.length () == n) { FloatComplexMatrix tmp = u; OCTAVE_LOCAL_BUFFER (float, w, n); F77_XFCN (cch1up, CCH1UP, (n, chol_mat.fortran_vec (), tmp.fortran_vec (), w)); } else (*current_liboctave_error_handler) ("CHOL update dimension mismatch"); } octave_idx_type FloatComplexCHOL::downdate (const FloatComplexMatrix& u) { octave_idx_type info = -1; octave_idx_type n = chol_mat.rows (); if (u.length () == n) { FloatComplexMatrix tmp = u; OCTAVE_LOCAL_BUFFER (float, w, n); F77_XFCN (cch1dn, CCH1DN, (n, chol_mat.fortran_vec (), tmp.fortran_vec (), w, info)); } else (*current_liboctave_error_handler) ("CHOL downdate dimension mismatch"); return info; } octave_idx_type FloatComplexCHOL::insert_sym (const FloatComplexMatrix& u, octave_idx_type j) { octave_idx_type info = -1; octave_idx_type n = chol_mat.rows (); if (u.length () != n+1) (*current_liboctave_error_handler) ("CHOL insert dimension mismatch"); else if (j < 0 || j > n) (*current_liboctave_error_handler) ("CHOL insert index out of range"); else { FloatComplexMatrix chol_mat1 (n+1, n+1); F77_XFCN (cchinx, CCHINX, (n, chol_mat.data (), chol_mat1.fortran_vec (), j+1, u.data (), info)); chol_mat = chol_mat1; } return info; } void FloatComplexCHOL::delete_sym (octave_idx_type j) { octave_idx_type n = chol_mat.rows (); if (j < 0 || j > n-1) (*current_liboctave_error_handler) ("CHOL delete index out of range"); else { FloatComplexMatrix chol_mat1 (n-1, n-1); F77_XFCN (cchdex, CCHDEX, (n, chol_mat.data (), chol_mat1.fortran_vec (), j+1)); chol_mat = chol_mat1; } } void FloatComplexCHOL::shift_sym (octave_idx_type i, octave_idx_type j) { octave_idx_type n = chol_mat.rows (); FloatComplex dummy; if (i < 0 || i > n-1 || j < 0 || j > n-1) (*current_liboctave_error_handler) ("CHOL shift index out of range"); else F77_XFCN (cqrshc, CQRSHC, (0, n, n, &dummy, chol_mat.fortran_vec (), i+1, j+1)); } FloatComplexMatrix chol2inv (const FloatComplexMatrix& r) { return chol2inv_internal (r); } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */