Mercurial > hg > octave-nkf
view liboctave/Array-util.cc @ 8924:3c3cbe8f18e0 ss-3-1-54
bump version info for snapshot
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 13:28:03 -0500 |
parents | eb63fbe60fab |
children | 864805896876 |
line wrap: on
line source
/* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "Array-util.h" #include "dim-vector.h" #include "lo-error.h" bool index_in_bounds (const Array<octave_idx_type>& ra_idx, const dim_vector& dimensions) { bool retval = true; int n = ra_idx.length (); if (n == dimensions.length ()) { for (int i = 0; i < n; i++) { if (ra_idx(i) < 0 || ra_idx(i) >= dimensions(i)) { retval = false; break; } } } else retval = false; return retval; } void increment_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions, int start_dimension) { ra_idx(start_dimension)++; int n = ra_idx.length () - 1; int nda = dimensions.length (); for (int i = start_dimension; i < n; i++) { if (ra_idx(i) < (i < nda ? dimensions(i) : 1)) break; else { ra_idx(i) = 0; ra_idx(i+1)++; } } } octave_idx_type get_scalar_idx (Array<octave_idx_type>& idx, dim_vector& dims) { octave_idx_type retval (-1); int n = idx.length (); if (n > 0) { retval = idx(--n); while (--n >= 0) { retval *= dims (n); retval += idx(n); } } return retval; } octave_idx_type num_ones (const Array<octave_idx_type>& ra_idx) { octave_idx_type retval = 0; for (octave_idx_type i = 0; i < ra_idx.length (); i++) { if (ra_idx (i) == 1) retval++; } return retval; } bool is_scalar (const dim_vector& dim) { bool retval = true; int n = dim.length (); if (n == 0) { retval = false; } else { for (int i = 0; i < n; i ++) { if (dim (i) != 1) { retval = false; break; } } } return retval; } bool is_vector (const dim_vector& dim) { int m = 0; int n = dim.length (); if (n == 0) m = 2; else { for (int i = 0; i < n; i ++) if (dim (i) > 1) m++; else if (dim(i) < 1) m += 2; } return (m < 2); } bool any_ones (const Array<octave_idx_type>& arr) { bool retval = false; for (octave_idx_type i = 0; i < arr.length (); i++) { if (arr (i) == 1) { retval = true; break; } } return retval; } octave_idx_type compute_index (const Array<octave_idx_type>& ra_idx, const dim_vector& dims) { octave_idx_type retval = -1; int n = dims.length (); if (n > 0 && n == ra_idx.length ()) { retval = ra_idx(--n); while (--n >= 0) { retval *= dims(n); retval += ra_idx(n); } } else (*current_liboctave_error_handler) ("ArrayN<T>::compute_index: invalid ra_idxing operation"); return retval; } Array<octave_idx_type> conv_to_int_array (const Array<idx_vector>& a) { Array<octave_idx_type> retval (a.length ()); for (octave_idx_type i = 0; i < a.length (); i++) retval (i) = a(i).elem (0); return retval; } Array<idx_vector> conv_to_array (const idx_vector *tmp, const octave_idx_type len) { Array<idx_vector> retval (len); for (octave_idx_type i = 0; i < len; i++) retval (i) = tmp[i]; return retval; } dim_vector freeze (Array<idx_vector>& ra_idx, const dim_vector& dimensions, int resize_ok) { dim_vector retval; int n = ra_idx.length (); assert (n == dimensions.length ()); retval.resize (n); static const char *tag[3] = { "row", "column", 0 }; for (int i = 0; i < n; i++) retval(i) = ra_idx(i).freeze (dimensions(i), tag[i < 2 ? i : 3], resize_ok); return retval; } bool vector_equivalent (const dim_vector& dv) { int n = dv.length (); bool found_first = false; for (int i = 0; i < n; i++) { if (dv(i) != 1) { if (! found_first) found_first = true; else return false; } } return true; } bool all_ok (const Array<idx_vector>& ra_idx) { bool retval = true; octave_idx_type n = ra_idx.length (); for (octave_idx_type i = 0; i < n; i++) { if (! ra_idx(i)) { retval = false; break; } } return retval; } bool any_orig_empty (const Array<idx_vector>& ra_idx) { bool retval = false; octave_idx_type n = ra_idx.length (); for (octave_idx_type i = 0; i < n; i++) { if (ra_idx(i).orig_empty ()) { retval = true; break; } } return retval; } bool all_colon_equiv (const Array<idx_vector>& ra_idx, const dim_vector& frozen_lengths) { bool retval = true; octave_idx_type idx_n = ra_idx.length (); int n = frozen_lengths.length (); assert (idx_n == n); for (octave_idx_type i = 0; i < n; i++) { if (! ra_idx(i).is_colon_equiv (frozen_lengths(i))) { retval = false; break; } } return retval; } bool all_ones (const Array<octave_idx_type>& arr) { bool retval = true; for (octave_idx_type i = 0; i < arr.length (); i++) { if (arr(i) != 1) { retval = false; break; } } return retval; } Array<octave_idx_type> get_elt_idx (const Array<idx_vector>& ra_idx, const Array<octave_idx_type>& result_idx) { octave_idx_type n = ra_idx.length (); Array<octave_idx_type> retval (n); for (octave_idx_type i = 0; i < n; i++) retval(i) = ra_idx(i).elem (result_idx(i)); return retval; } Array<octave_idx_type> get_ra_idx (octave_idx_type idx, const dim_vector& dims) { Array<octave_idx_type> retval; int n_dims = dims.length (); retval.resize (n_dims); for (int i = 0; i < n_dims; i++) retval(i) = 0; assert (idx > 0 || idx < dims.numel ()); for (octave_idx_type i = 0; i < idx; i++) increment_index (retval, dims); // FIXME -- the solution using increment_index is not // efficient. #if 0 octave_idx_type var = 1; for (int i = 0; i < n_dims; i++) { std::cout << "idx: " << idx << ", var: " << var << ", dims(" << i << "): " << dims(i) <<"\n"; retval(i) = ((int)floor(((idx) / (double)var))) % dims(i); idx -= var * retval(i); var = dims(i); } #endif return retval; } dim_vector zero_dims_inquire (const Array<idx_vector>& ia, const dim_vector& rhdv) { int ial = ia.length (), rhdvl = rhdv.length (); dim_vector rdv; rdv.resize (ial); bool *scalar = new bool[ial], *colon = new bool[ial]; // Mark scalars and colons, count non-scalar indices. int nonsc = 0; bool all_colons = true; for (int i = 0; i < ial; i++) { // FIXME -- should we check for length() instead? scalar[i] = ia(i).is_scalar (); colon[i] = ia(i).is_colon (); if (! scalar[i]) nonsc++; if (! colon[i]) rdv(i) = ia(i).extent (0); all_colons = all_colons && colon[i]; } // If the number of nonscalar indices matches the dimensionality of // RHS, we try an exact match, inquiring even singleton dimensions. if (all_colons) { rdv = rhdv; rdv.resize(ial, 1); } else if (nonsc == rhdvl) { for (int i = 0, j = 0; i < ial; i++) { if (scalar[i]) continue; if (colon[i]) rdv(i) = rhdv(j++); } } else { dim_vector rhdv0 = rhdv; rhdv0.chop_all_singletons (); int rhdv0l = rhdv0.length (); for (int i = 0, j = 0; i < ial; i++) { if (scalar[i]) continue; if (colon[i]) rdv(i) = (j < rhdv0l) ? rhdv0(j++) : 1; } } delete [] scalar; delete [] colon; return rdv; } dim_vector zero_dims_inquire (const idx_vector& i, const idx_vector& j, const dim_vector& rhdv) { bool icol = i.is_colon (), jcol = j.is_colon (); dim_vector rdv; if (icol && jcol && rhdv.length () == 2) { rdv(0) = rhdv(0); rdv(1) = rhdv(1); } else { dim_vector rhdv0 = rhdv; rhdv0.chop_all_singletons (); int k = 0; rdv(0) = i.extent (0); if (icol) rdv(0) = rhdv0(k++); else if (! i.is_scalar ()) k++; rdv(1) = j.extent (0); if (jcol) rdv(1) = rhdv0(k++); else if (! j.is_scalar ()) k++; } return rdv; } int permute_vector_compare (const void *a, const void *b) { const permute_vector *pva = static_cast<const permute_vector *> (a); const permute_vector *pvb = static_cast<const permute_vector *> (b); return pva->pidx > pvb->pidx; } void gripe_nan_to_logical_conversion (void) { (*current_liboctave_error_handler) ("invalid conversion of NaN to logical"); } void gripe_nonconformant (const char *op, int op1_len, int op2_len) { (*current_liboctave_error_handler) ("%s: nonconformant arguments (op1 len: %d, op2 len: %d)", op, op1_len, op2_len); } void gripe_nonconformant (const char *op, int op1_nr, int op1_nc, int op2_nr, int op2_nc) { (*current_liboctave_error_handler) ("%s: nonconformant arguments (op1 is %dx%d, op2 is %dx%d)", op, op1_nr, op1_nc, op2_nr, op2_nc); } void gripe_nonconformant (const char *op, dim_vector& op1_dims, dim_vector& op2_dims) { std::string op1_dims_str = op1_dims.str (); std::string op2_dims_str = op2_dims.str (); (*current_liboctave_error_handler) ("%s: nonconformant arguments (op1 is %s, op2 is %s)", op, op1_dims_str.c_str (), op2_dims_str.c_str ()); } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */