Mercurial > hg > octave-nkf
view liboctave/randpoisson.c @ 8924:3c3cbe8f18e0 ss-3-1-54
bump version info for snapshot
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 13:28:03 -0500 |
parents | eb63fbe60fab |
children | 4c0cdbe0acca |
line wrap: on
line source
/* Copyright (C) 2006, 2007, 2008 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ /* Original version written by Paul Kienzle distributed as free software in the in the public domain. */ /* Needs the following defines: * NAN: value to return for Not-A-Number * RUNI: uniform generator on (0,1) * RNOR: normal generator * LGAMMA: log gamma function * INFINITE: function to test whether a value is infinite */ #if defined (HAVE_CONFIG_H) #include <config.h> #endif #include <stdio.h> #include "f77-fcn.h" #include "lo-error.h" #include "lo-ieee.h" #include "lo-math.h" #include "randmtzig.h" #include "randpoisson.h" #undef NAN #define NAN octave_NaN #undef INFINITE #define INFINITE lo_ieee_isinf #define RUNI oct_randu() #define RNOR oct_randn() #define LGAMMA xlgamma F77_RET_T F77_FUNC (dlgams, DLGAMS) (const double *, double *, double *); static double xlgamma (double x) { double result; #ifdef HAVE_LGAMMA result = lgamma (x); #else double sgngam; if (lo_ieee_isnan (x)) result = x; else if (x <= 0 || lo_ieee_isinf (x)) result = octave_Inf; else F77_XFCN (dlgams, DLGAMS, (&x, &result, &sgngam)); #endif return result; } /* ---- pprsc.c from Stadloeber's winrand --- */ /* flogfak(k) = ln(k!) */ static double flogfak (double k) { #define C0 9.18938533204672742e-01 #define C1 8.33333333333333333e-02 #define C3 -2.77777777777777778e-03 #define C5 7.93650793650793651e-04 #define C7 -5.95238095238095238e-04 static double logfak[30L] = { 0.00000000000000000, 0.00000000000000000, 0.69314718055994531, 1.79175946922805500, 3.17805383034794562, 4.78749174278204599, 6.57925121201010100, 8.52516136106541430, 10.60460290274525023, 12.80182748008146961, 15.10441257307551530, 17.50230784587388584, 19.98721449566188615, 22.55216385312342289, 25.19122118273868150, 27.89927138384089157, 30.67186010608067280, 33.50507345013688888, 36.39544520803305358, 39.33988418719949404, 42.33561646075348503, 45.38013889847690803, 48.47118135183522388, 51.60667556776437357, 54.78472939811231919, 58.00360522298051994, 61.26170176100200198, 64.55753862700633106, 67.88974313718153498, 71.25703896716800901 }; double r, rr; if (k >= 30.0) { r = 1.0 / k; rr = r * r; return ((k + 0.5)*log(k) - k + C0 + r*(C1 + rr*(C3 + rr*(C5 + rr*C7)))); } else return (logfak[(int)k]); } /****************************************************************** * * * Poisson Distribution - Patchwork Rejection/Inversion * * * ****************************************************************** * * * For parameter my < 10 Tabulated Inversion is applied. * * For my >= 10 Patchwork Rejection is employed: * * The area below the histogram function f(x) is rearranged in * * its body by certain point reflections. Within a large center * * interval variates are sampled efficiently by rejection from * * uniform hats. Rectangular immediate acceptance regions speed * * up the generation. The remaining tails are covered by * * exponential functions. * * * ****************************************************************** * * * FUNCTION : - pprsc samples a random number from the Poisson * * distribution with parameter my > 0. * * REFERENCE : - H. Zechner (1994): Efficient sampling from * * continuous and discrete unimodal distributions, * * Doctoral Dissertation, 156 pp., Technical * * University Graz, Austria. * * SUBPROGRAM : - drand(seed) ... (0,1)-Uniform generator with * * unsigned long integer *seed. * * * * Implemented by H. Zechner, January 1994 * * Revised by F. Niederl, July 1994 * * * ******************************************************************/ static double f (double k, double l_nu, double c_pm) { return exp(k * l_nu - flogfak(k) - c_pm); } static double pprsc (double my) { static double my_last = -1.0; static double m, k2, k4, k1, k5; static double dl, dr, r1, r2, r4, r5, ll, lr, l_my, c_pm, f1, f2, f4, f5, p1, p2, p3, p4, p5, p6; double Dk, X, Y; double Ds, U, V, W; if (my != my_last) { /* set-up */ my_last = my; /* approximate deviation of reflection points k2, k4 from my - 1/2 */ Ds = sqrt(my + 0.25); /* mode m, reflection points k2 and k4, and points k1 and k5, */ /* which delimit the centre region of h(x) */ m = floor(my); k2 = ceil(my - 0.5 - Ds); k4 = floor(my - 0.5 + Ds); k1 = k2 + k2 - m + 1L; k5 = k4 + k4 - m; /* range width of the critical left and right centre region */ dl = (k2 - k1); dr = (k5 - k4); /* recurrence constants r(k)=p(k)/p(k-1) at k = k1, k2, k4+1, k5+1 */ r1 = my / k1; r2 = my / k2; r4 = my / (k4 + 1.0); r5 = my / (k5 + 1.0); /* reciprocal values of the scale parameters of exp. tail envelope */ ll = log(r1); /* expon. tail left */ lr = -log(r5); /* expon. tail right*/ /* Poisson constants, necessary for computing function values f(k) */ l_my = log(my); c_pm = m * l_my - flogfak(m); /* function values f(k) = p(k)/p(m) at k = k2, k4, k1, k5 */ f2 = f(k2, l_my, c_pm); f4 = f(k4, l_my, c_pm); f1 = f(k1, l_my, c_pm); f5 = f(k5, l_my, c_pm); /* area of the two centre and the two exponential tail regions */ /* area of the two immediate acceptance regions between k2, k4 */ p1 = f2 * (dl + 1.0); /* immed. left */ p2 = f2 * dl + p1; /* centre left */ p3 = f4 * (dr + 1.0) + p2; /* immed. right */ p4 = f4 * dr + p3; /* centre right */ p5 = f1 / ll + p4; /* exp. tail left */ p6 = f5 / lr + p5; /* exp. tail right*/ } for (;;) { /* generate uniform number U -- U(0, p6) */ /* case distinction corresponding to U */ if ((U = RUNI * p6) < p2) { /* centre left */ /* immediate acceptance region R2 = [k2, m) *[0, f2), X = k2, ... m -1 */ if ((V = U - p1) < 0.0) return(k2 + floor(U/f2)); /* immediate acceptance region R1 = [k1, k2)*[0, f1), X = k1, ... k2-1 */ if ((W = V / dl) < f1 ) return(k1 + floor(V/f1)); /* computation of candidate X < k2, and its counterpart Y > k2 */ /* either squeeze-acceptance of X or acceptance-rejection of Y */ Dk = floor(dl * RUNI) + 1.0; if (W <= f2 - Dk * (f2 - f2/r2)) { /* quick accept of */ return(k2 - Dk); /* X = k2 - Dk */ } if ((V = f2 + f2 - W) < 1.0) { /* quick reject of Y*/ Y = k2 + Dk; if (V <= f2 + Dk * (1.0 - f2)/(dl + 1.0)) { /* quick accept of */ return(Y); /* Y = k2 + Dk */ } if (V <= f(Y, l_my, c_pm)) return(Y); /* final accept of Y*/ } X = k2 - Dk; } else if (U < p4) { /* centre right */ /* immediate acceptance region R3 = [m, k4+1)*[0, f4), X = m, ... k4 */ if ((V = U - p3) < 0.0) return(k4 - floor((U - p2)/f4)); /* immediate acceptance region R4 = [k4+1, k5+1)*[0, f5) */ if ((W = V / dr) < f5 ) return(k5 - floor(V/f5)); /* computation of candidate X > k4, and its counterpart Y < k4 */ /* either squeeze-acceptance of X or acceptance-rejection of Y */ Dk = floor(dr * RUNI) + 1.0; if (W <= f4 - Dk * (f4 - f4*r4)) { /* quick accept of */ return(k4 + Dk); /* X = k4 + Dk */ } if ((V = f4 + f4 - W) < 1.0) { /* quick reject of Y*/ Y = k4 - Dk; if (V <= f4 + Dk * (1.0 - f4)/ dr) { /* quick accept of */ return(Y); /* Y = k4 - Dk */ } if (V <= f(Y, l_my, c_pm)) return(Y); /* final accept of Y*/ } X = k4 + Dk; } else { W = RUNI; if (U < p5) { /* expon. tail left */ Dk = floor(1.0 - log(W)/ll); if ((X = k1 - Dk) < 0L) continue; /* 0 <= X <= k1 - 1 */ W *= (U - p4) * ll; /* W -- U(0, h(x)) */ if (W <= f1 - Dk * (f1 - f1/r1)) return(X); /* quick accept of X*/ } else { /* expon. tail right*/ Dk = floor(1.0 - log(W)/lr); X = k5 + Dk; /* X >= k5 + 1 */ W *= (U - p5) * lr; /* W -- U(0, h(x)) */ if (W <= f5 - Dk * (f5 - f5*r5)) return(X); /* quick accept of X*/ } } /* acceptance-rejection test of candidate X from the original area */ /* test, whether W <= f(k), with W = U*h(x) and U -- U(0, 1)*/ /* log f(X) = (X - m)*log(my) - log X! + log m! */ if (log(W) <= X * l_my - flogfak(X) - c_pm) return(X); } } /* ---- pprsc.c end ------ */ /* The remainder of the file is by Paul Kienzle */ /* Given uniform u, find x such that CDF(L,x)==u. Return x. */ static void poisson_cdf_lookup(double lambda, double *p, size_t n) { /* Table size is predicated on the maximum value of lambda * we want to store in the table, and the maximum value of * returned by the uniform random number generator on [0,1). * With lambda==10 and u_max = 1 - 1/(2^32+1), we * have poisson_pdf(lambda,36) < 1-u_max. If instead our * generator uses more bits of mantissa or returns a value * in the range [0,1], then for lambda==10 we need a table * size of 46 instead. For long doubles, the table size * will need to be longer still. */ #define TABLESIZE 46 double t[TABLESIZE]; /* Precompute the table for the u up to and including 0.458. * We will almost certainly need it. */ int intlambda = (int)floor(lambda); double P; int tableidx; size_t i = n; t[0] = P = exp(-lambda); for (tableidx = 1; tableidx <= intlambda; tableidx++) { P = P*lambda/(double)tableidx; t[tableidx] = t[tableidx-1] + P; } while (i-- > 0) { double u = RUNI; /* If u > 0.458 we know we can jump to floor(lambda) before * comparing (this observation is based on Stadlober's winrand * code). For lambda >= 1, this will be a win. Lambda < 1 * is already fast, so adding an extra comparison is not a * problem. */ int k = (u > 0.458 ? intlambda : 0); /* We aren't using a for loop here because when we find the * right k we want to jump to the next iteration of the * outer loop, and the continue statement will only work for * the inner loop. */ nextk: if ( u <= t[k] ) { p[i] = (double) k; continue; } if (++k < tableidx) goto nextk; /* We only need high values of the table very rarely so we * don't automatically compute the entire table. */ while (tableidx < TABLESIZE) { P = P*lambda/(double)tableidx; t[tableidx] = t[tableidx-1] + P; /* Make sure we converge to 1.0 just in case u is uniform * on [0,1] rather than [0,1). */ if (t[tableidx] == t[tableidx-1]) t[tableidx] = 1.0; tableidx++; if (u <= t[tableidx-1]) break; } /* We are assuming that the table size is big enough here. * This should be true even if RUNI is returning values in * the range [0,1] rather than [0,1). */ p[i] = (double)(tableidx-1); } } /* From Press, et al., Numerical Recipes */ static void poisson_rejection (double lambda, double *p, size_t n) { double sq = sqrt(2.0*lambda); double alxm = log(lambda); double g = lambda*alxm - LGAMMA(lambda+1.0); size_t i; for (i = 0; i < n; i++) { double y, em, t; do { do { y = tan(M_PI*RUNI); em = sq * y + lambda; } while (em < 0.0); em = floor(em); t = 0.9*(1.0+y*y)*exp(em*alxm-flogfak(em)-g); } while (RUNI > t); p[i] = em; } } /* The cutoff of L <= 1e8 in the following two functions before using * the normal approximation is based on: * > L=1e8; x=floor(linspace(0,2*L,1000)); * > max(abs(normal_pdf(x,L,L)-poisson_pdf(x,L))) * ans = 1.1376e-28 * For L=1e7, the max is around 1e-9, which is within the step size of RUNI. * For L>1e10 the pprsc function breaks down, as I saw from the histogram * of a large sample, so 1e8 is both small enough and large enough. */ /* Generate a set of poisson numbers with the same distribution */ void oct_fill_randp (double L, octave_idx_type n, double *p) { octave_idx_type i; if (L < 0.0 || INFINITE(L)) { for (i=0; i<n; i++) p[i] = NAN; } else if (L <= 10.0) { poisson_cdf_lookup(L, p, n); } else if (L <= 1e8) { for (i=0; i<n; i++) p[i] = pprsc(L); } else { /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */ const double sqrtL = sqrt(L); for (i = 0; i < n; i++) { p[i] = floor(RNOR*sqrtL + L + 0.5); if (p[i] < 0.0) p[i] = 0.0; /* will probably never happen */ } } } /* Generate one poisson variate */ double oct_randp (double L) { double ret; if (L < 0.0) ret = NAN; else if (L <= 12.0) { /* From Press, et al. Numerical recipes */ double g = exp(-L); int em = -1; double t = 1.0; do { ++em; t *= RUNI; } while (t > g); ret = em; } else if (L <= 1e8) { /* numerical recipes */ poisson_rejection(L, &ret, 1); } else if (INFINITE(L)) { /* FIXME R uses NaN, but the normal approx. suggests that as * limit should be inf. Which is correct? */ ret = NAN; } else { /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */ ret = floor(RNOR*sqrt(L) + L + 0.5); if (ret < 0.0) ret = 0.0; /* will probably never happen */ } return ret; } /* ;;; Local Variables: *** ;;; mode: C *** ;;; End: *** */