Mercurial > hg > octave-nkf
view scripts/general/pol2cart.m @ 11117:3cbc0d77db48 ss-3-3-53
update version info for snapshot
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Tue, 19 Oct 2010 02:25:32 -0400 |
parents | be55736a0783 |
children | fd0a3ac60b0e |
line wrap: on
line source
## Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2009 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{x}, @var{y}] =} pol2cart (@var{theta}, @var{r}) ## @deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} pol2cart (@var{theta}, @var{r}, @var{z}) ## @deftypefnx {Function File} {[@var{x}, @var{y}] =} pol2cart (@var{p}) ## @deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} pol2cart (@var{p}) ## @deftypefnx {Function File} {@var{C} =} pol2cart (@dots{}) ## Transform polar or cylindrical to Cartesian coordinates. ## ## @var{theta}, @var{r}, (and @var{z}) must be the same shape, or scalar. ## @var{theta} describes the angle relative to the positive x-axis. ## @var{r} is the distance to the z-axis (0, 0, z). ## If called with a single matrix argument then each row of @var{p} ## represents the polar/(cylindrical) coordinate (@var{x}, @var{y} (, @var{z})). ## ## If only a single return argument is requested then return a matrix ## @var{C} where each row represents one Cartesian coordinate ## (@var{x}, @var{y} (, @var{z})). ## @seealso{cart2pol, sph2cart, cart2sph} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Adapted-by: jwe function [x, y, z] = pol2cart (theta, r, z) if (nargin < 1 || nargin > 3) print_usage (); endif if (nargin == 1) if (ismatrix (theta) && (columns (theta) == 2 || columns (theta) == 3)) if (columns (theta) == 3) z = theta(:,3); else z = []; endif r = theta(:,2); theta = theta(:,1); else error ("pol2car: matrix input must have 2 or 3 columns [THETA, R (, Z)]"); endif elseif (nargin == 2) if (! ((ismatrix (theta) && ismatrix (r)) && (size_equal (theta, r) || isscalar (theta) || isscalar (r)))) error ("pol2cart: arguments must be matrices of same size, or scalar"); endif elseif (nargin == 3) if (! ((ismatrix (theta) && ismatrix (r) && ismatrix (z)) && (size_equal (theta, r) || isscalar (theta) || isscalar (r)) && (size_equal (theta, z) || isscalar (theta) || isscalar (z)) && (size_equal (r, z) || isscalar (r) || isscalar (z)))) error ("pol2cart: arguments must be matrices of same size, or scalar"); endif endif x = r .* cos (theta); y = r .* sin (theta); if (nargout <= 1) x = [x, y, z]; endif endfunction %!test %! t = [0, 0.5, 1] * pi; %! r = 1; %! [x, y] = pol2cart (t, r); %! assert (x, [1, 0, -1], sqrt(eps)); %! assert (y, [0, 1, 0], sqrt(eps)); %!test %! t = [0, 1, 1] * pi/4; %! r = sqrt(2) * [0, 1, 2]; %! [x, y] = pol2cart (t, r); %! assert (x, [0, 1, 2], sqrt(eps)); %! assert (y, [0, 1, 2], sqrt(eps)); %!test %! t = [0, 1, 1] * pi/4; %! r = sqrt(2) * [0, 1, 2]; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [0, 1, 2], sqrt(eps)); %! assert (y, [0, 1, 2], sqrt(eps)); %! assert (z, z2); %!test %! t = 0; %! r = [0, 1, 2]; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [0, 1, 2], sqrt(eps)); %! assert (y, [0, 0, 0], sqrt(eps)); %! assert (z, z2); %!test %! t = [1, 1, 1]*pi/4; %! r = 1; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [1, 1, 1] / sqrt(2), eps); %! assert (y, [1, 1, 1] / sqrt(2), eps); %! assert (z, z2); %!test %! t = 0; %! r = [1, 2, 3]; %! z = 1; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [1, 2, 3], eps); %! assert (y, [0, 0, 0] / sqrt(2), eps); %! assert (z, z2); %!test %! P = [0, 0; pi/4, sqrt(2); pi/4, 2*sqrt(2)]; %! C = [0, 0; 1, 1; 2, 2]; %! assert (pol2cart(P), C, sqrt(eps)); %!test %! P = [0, 0, 0; pi/4, sqrt(2), 1; pi/4, 2*sqrt(2), 2]; %! C = [0, 0, 0; 1, 1, 1; 2, 2, 2]; %! assert (pol2cart(P), C, sqrt(eps));