Mercurial > hg > octave-nkf
view liboctave/Array-util.cc @ 14026:3781981be535 ss-3-5-90
snapshot 3.5.90
* configure.ac (AC_INIT): Version is now 3.5.90.
(OCTAVE_API_VERSION_NUMBER): Now 46.
(OCTAVE_RELEASE_DATE): Now 2011-12-11.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sun, 11 Dec 2011 23:18:31 -0500 |
parents | 12df7854fa7c |
children | 72c96de7a403 |
line wrap: on
line source
/* Copyright (C) 2003-2011 John W. Eaton Copyright (C) 2009 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "Array-util.h" #include "dim-vector.h" #include "lo-error.h" #include "oct-locbuf.h" bool index_in_bounds (const Array<octave_idx_type>& ra_idx, const dim_vector& dimensions) { bool retval = true; int n = ra_idx.length (); if (n == dimensions.length ()) { for (int i = 0; i < n; i++) { if (ra_idx(i) < 0 || ra_idx(i) >= dimensions(i)) { retval = false; break; } } } else retval = false; return retval; } void increment_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions, int start_dimension) { ra_idx(start_dimension)++; int n = ra_idx.length () - 1; int nda = dimensions.length (); for (int i = start_dimension; i < n; i++) { if (ra_idx(i) < (i < nda ? dimensions(i) : 1)) break; else { ra_idx(i) = 0; ra_idx(i+1)++; } } } octave_idx_type get_scalar_idx (Array<octave_idx_type>& idx, dim_vector& dims) { octave_idx_type retval (-1); int n = idx.length (); if (n > 0) { retval = idx(--n); while (--n >= 0) { retval *= dims (n); retval += idx(n); } } return retval; } octave_idx_type num_ones (const Array<octave_idx_type>& ra_idx) { octave_idx_type retval = 0; for (octave_idx_type i = 0; i < ra_idx.length (); i++) { if (ra_idx (i) == 1) retval++; } return retval; } bool is_scalar (const dim_vector& dim) { bool retval = true; int n = dim.length (); if (n == 0) { retval = false; } else { for (int i = 0; i < n; i ++) { if (dim (i) != 1) { retval = false; break; } } } return retval; } bool is_vector (const dim_vector& dim) { int m = 0; int n = dim.length (); if (n == 0) m = 2; else { for (int i = 0; i < n; i ++) if (dim (i) > 1) m++; else if (dim(i) < 1) m += 2; } return (m < 2); } bool any_ones (const Array<octave_idx_type>& arr) { bool retval = false; for (octave_idx_type i = 0; i < arr.length (); i++) { if (arr (i) == 1) { retval = true; break; } } return retval; } octave_idx_type compute_index (octave_idx_type n, const dim_vector& dims) { if (n < 0) gripe_invalid_index (); if (n >= dims.numel ()) gripe_index_out_of_range (1, 1, n+1, dims.numel ()); return n; } octave_idx_type compute_index (octave_idx_type i, octave_idx_type j, const dim_vector& dims) { if (i < 0 || j < 0) gripe_invalid_index (); if (i >= dims(0)) gripe_index_out_of_range (2, 1, i+1, dims(0)); if (j >= dims.numel (1)) gripe_index_out_of_range (2, 2, j+1, dims.numel (1)); return j*dims(0) + i; } octave_idx_type compute_index (octave_idx_type i, octave_idx_type j, octave_idx_type k, const dim_vector& dims) { if (i < 0 || j < 0 || k < 0) gripe_invalid_index (); if (i >= dims(0)) gripe_index_out_of_range (3, 1, i+1, dims(0)); if (j >= dims(1)) gripe_index_out_of_range (3, 2, j+1, dims(1)); if (k >= dims.numel (2)) gripe_index_out_of_range (3, 3, k+1, dims.numel (2)); return (k*dims(1) + j)*dims(0) + i; } octave_idx_type compute_index (const Array<octave_idx_type>& ra_idx, const dim_vector& dims) { int nd = ra_idx.length (); const dim_vector dv = dims.redim (nd); for (int d = 0; d < nd; d++) { if (ra_idx(d) < 0) gripe_invalid_index (); if (ra_idx(d) >= dv(d)) gripe_index_out_of_range (nd, d+1, ra_idx(d)+1, dv(d)); } return dv.compute_index (ra_idx.data ()); } Array<octave_idx_type> conv_to_int_array (const Array<idx_vector>& a) { Array<octave_idx_type> retval (a.dims ()); for (octave_idx_type i = 0; i < a.length (); i++) retval (i) = a(i).elem (0); return retval; } Array<idx_vector> conv_to_array (const idx_vector *tmp, const octave_idx_type len) { Array<idx_vector> retval (dim_vector (len, 1)); for (octave_idx_type i = 0; i < len; i++) retval (i) = tmp[i]; return retval; } dim_vector freeze (Array<idx_vector>& ra_idx, const dim_vector& dimensions, int resize_ok) { dim_vector retval; int n = ra_idx.length (); assert (n == dimensions.length ()); retval.resize (n); static const char *tag[3] = { "row", "column", 0 }; for (int i = 0; i < n; i++) retval(i) = ra_idx(i).freeze (dimensions(i), tag[i < 2 ? i : 3], resize_ok); return retval; } bool vector_equivalent (const dim_vector& dv) { int n = dv.length (); bool found_first = false; for (int i = 0; i < n; i++) { if (dv(i) != 1) { if (! found_first) found_first = true; else return false; } } return true; } bool all_ok (const Array<idx_vector>& ra_idx) { bool retval = true; octave_idx_type n = ra_idx.length (); for (octave_idx_type i = 0; i < n; i++) { if (! ra_idx(i)) { retval = false; break; } } return retval; } bool any_orig_empty (const Array<idx_vector>& ra_idx) { bool retval = false; octave_idx_type n = ra_idx.length (); for (octave_idx_type i = 0; i < n; i++) { if (ra_idx(i).orig_empty ()) { retval = true; break; } } return retval; } bool all_colon_equiv (const Array<idx_vector>& ra_idx, const dim_vector& frozen_lengths) { bool retval = true; octave_idx_type idx_n = ra_idx.length (); int n = frozen_lengths.length (); assert (idx_n == n); for (octave_idx_type i = 0; i < n; i++) { if (! ra_idx(i).is_colon_equiv (frozen_lengths(i))) { retval = false; break; } } return retval; } bool all_ones (const Array<octave_idx_type>& arr) { bool retval = true; for (octave_idx_type i = 0; i < arr.length (); i++) { if (arr(i) != 1) { retval = false; break; } } return retval; } Array<octave_idx_type> get_elt_idx (const Array<idx_vector>& ra_idx, const Array<octave_idx_type>& result_idx) { octave_idx_type n = ra_idx.length (); Array<octave_idx_type> retval (dim_vector (n, 1)); for (octave_idx_type i = 0; i < n; i++) retval(i) = ra_idx(i).elem (result_idx(i)); return retval; } Array<octave_idx_type> get_ra_idx (octave_idx_type idx, const dim_vector& dims) { Array<octave_idx_type> retval; int n_dims = dims.length (); retval.resize (dim_vector (n_dims, 1)); for (int i = 0; i < n_dims; i++) retval(i) = 0; assert (idx > 0 || idx < dims.numel ()); for (octave_idx_type i = 0; i < idx; i++) increment_index (retval, dims); // FIXME -- the solution using increment_index is not // efficient. #if 0 octave_idx_type var = 1; for (int i = 0; i < n_dims; i++) { std::cout << "idx: " << idx << ", var: " << var << ", dims(" << i << "): " << dims(i) <<"\n"; retval(i) = ((int)floor(((idx) / (double)var))) % dims(i); idx -= var * retval(i); var = dims(i); } #endif return retval; } dim_vector zero_dims_inquire (const Array<idx_vector>& ia, const dim_vector& rhdv) { int ial = ia.length (), rhdvl = rhdv.length (); dim_vector rdv = dim_vector::alloc (ial); bool *scalar = new bool[ial], *colon = new bool[ial]; // Mark scalars and colons, count non-scalar indices. int nonsc = 0; bool all_colons = true; for (int i = 0; i < ial; i++) { // FIXME -- should we check for length() instead? scalar[i] = ia(i).is_scalar (); colon[i] = ia(i).is_colon (); if (! scalar[i]) nonsc++; if (! colon[i]) rdv(i) = ia(i).extent (0); all_colons = all_colons && colon[i]; } // If the number of nonscalar indices matches the dimensionality of // RHS, we try an exact match, inquiring even singleton dimensions. if (all_colons) { rdv = rhdv; rdv.resize(ial, 1); } else if (nonsc == rhdvl) { for (int i = 0, j = 0; i < ial; i++) { if (scalar[i]) continue; if (colon[i]) rdv(i) = rhdv(j); j++; } } else { dim_vector rhdv0 = rhdv; rhdv0.chop_all_singletons (); int rhdv0l = rhdv0.length (); for (int i = 0, j = 0; i < ial; i++) { if (scalar[i]) continue; if (colon[i]) rdv(i) = (j < rhdv0l) ? rhdv0(j++) : 1; } } delete [] scalar; delete [] colon; return rdv; } dim_vector zero_dims_inquire (const idx_vector& i, const idx_vector& j, const dim_vector& rhdv) { bool icol = i.is_colon (), jcol = j.is_colon (); dim_vector rdv; if (icol && jcol && rhdv.length () == 2) { rdv(0) = rhdv(0); rdv(1) = rhdv(1); } else if (rhdv.length () == 2 && ! i.is_scalar () && ! j.is_scalar ()) { rdv(0) = icol ? rhdv(0) : i.extent (0); rdv(1) = jcol ? rhdv(1) : j.extent (0); } else { dim_vector rhdv0 = rhdv; rhdv0.chop_all_singletons (); int k = 0; rdv(0) = i.extent (0); if (icol) rdv(0) = rhdv0(k++); else if (! i.is_scalar ()) k++; rdv(1) = j.extent (0); if (jcol) rdv(1) = rhdv0(k++); else if (! j.is_scalar ()) k++; } return rdv; } // A helper class. struct sub2ind_helper { octave_idx_type *ind, n; sub2ind_helper (octave_idx_type *_ind, octave_idx_type _n) : ind(_ind), n(_n) { } void operator ()(octave_idx_type k) { (*ind++ *= n) += k; } }; idx_vector sub2ind (const dim_vector& dv, const Array<idx_vector>& idxa) { idx_vector retval; octave_idx_type len = idxa.length (); if (len >= 1) { const dim_vector dvx = dv.redim (len); bool all_ranges = true; octave_idx_type clen = -1; for (octave_idx_type i = 0; i < len; i++) { idx_vector idx = idxa(i); octave_idx_type n = dvx(i); all_ranges = all_ranges && idx.is_range (); if (clen < 0) clen = idx.length (n); else if (clen != idx.length (n)) current_liboctave_error_handler ("sub2ind: lengths of indices must match"); if (idx.extent (n) > n) current_liboctave_error_handler ("sub2ind: index out of range"); } if (len == 1) retval = idxa(0); else if (clen == 1) { // All scalars case - the result is a scalar. octave_idx_type idx = idxa(len-1)(0); for (octave_idx_type i = len - 2; i >= 0; i--) idx = idx * dvx(i) + idxa(i)(0); retval = idx_vector (idx); } else if (all_ranges && clen != 0) { // All ranges case - the result is a range. octave_idx_type start = 0, step = 0; for (octave_idx_type i = len - 1; i >= 0; i--) { octave_idx_type xstart = idxa(i)(0), xstep = idxa(i)(1) - xstart; start = start * dvx(i) + xstart; step = step * dvx(i) + xstep; } retval = idx_vector::make_range (start, step, clen); } else { Array<octave_idx_type> idx (idxa(0).orig_dimensions ()); octave_idx_type *idx_vec = idx.fortran_vec (); for (octave_idx_type i = len - 1; i >= 0; i--) { if (i < len - 1) idxa(i).loop (clen, sub2ind_helper (idx_vec, dvx(i))); else idxa(i).copy_data (idx_vec); } retval = idx_vector (idx); } } else current_liboctave_error_handler ("sub2ind: needs at least 2 indices"); return retval; } Array<idx_vector> ind2sub (const dim_vector& dv, const idx_vector& idx) { octave_idx_type len = idx.length (0), n = dv.length (); Array<idx_vector> retval (dim_vector (n, 1)); octave_idx_type numel = dv.numel (); if (idx.extent (numel) > numel) current_liboctave_error_handler ("ind2sub: index out of range"); else { if (idx.is_scalar ()) { octave_idx_type k = idx(0); for (octave_idx_type j = 0; j < n; j++) { retval(j) = k % dv(j); k /= dv(j); } } else { OCTAVE_LOCAL_BUFFER (Array<octave_idx_type>, rdata, n); dim_vector odv = idx.orig_dimensions (); for (octave_idx_type j = 0; j < n; j++) rdata[j] = Array<octave_idx_type> (odv); for (octave_idx_type i = 0; i < len; i++) { octave_idx_type k = idx(i); for (octave_idx_type j = 0; j < n; j++) { rdata[j](i) = k % dv(j); k /= dv(j); } } for (octave_idx_type j = 0; j < n; j++) retval(j) = rdata[j]; } } return retval; } int permute_vector_compare (const void *a, const void *b) { const permute_vector *pva = static_cast<const permute_vector *> (a); const permute_vector *pvb = static_cast<const permute_vector *> (b); return pva->pidx > pvb->pidx; }