Mercurial > hg > octave-nkf
view liboctave/Quad.cc @ 14026:3781981be535 ss-3-5-90
snapshot 3.5.90
* configure.ac (AC_INIT): Version is now 3.5.90.
(OCTAVE_API_VERSION_NUMBER): Now 46.
(OCTAVE_RELEASE_DATE): Now 2011-12-11.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sun, 11 Dec 2011 23:18:31 -0500 |
parents | 12df7854fa7c |
children | 72c96de7a403 |
line wrap: on
line source
/* Copyright (C) 1993-2011 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "Quad.h" #include "f77-fcn.h" #include "lo-error.h" #include "quit.h" #include "sun-utils.h" static integrand_fcn user_fcn; static float_integrand_fcn float_user_fcn; // FIXME -- would be nice to not have to have this global // variable. // Nonzero means an error occurred in the calculation of the integrand // function, and the user wants us to quit. int quad_integration_error = 0; typedef octave_idx_type (*quad_fcn_ptr) (double*, int&, double*); typedef octave_idx_type (*quad_float_fcn_ptr) (float*, int&, float*); extern "C" { F77_RET_T F77_FUNC (dqagp, DQAGP) (quad_fcn_ptr, const double&, const double&, const octave_idx_type&, const double*, const double&, const double&, double&, double&, octave_idx_type&, octave_idx_type&, const octave_idx_type&, const octave_idx_type&, octave_idx_type&, octave_idx_type*, double*); F77_RET_T F77_FUNC (dqagi, DQAGI) (quad_fcn_ptr, const double&, const octave_idx_type&, const double&, const double&, double&, double&, octave_idx_type&, octave_idx_type&, const octave_idx_type&, const octave_idx_type&, octave_idx_type&, octave_idx_type*, double*); F77_RET_T F77_FUNC (qagp, QAGP) (quad_float_fcn_ptr, const float&, const float&, const octave_idx_type&, const float*, const float&, const float&, float&, float&, octave_idx_type&, octave_idx_type&, const octave_idx_type&, const octave_idx_type&, octave_idx_type&, octave_idx_type*, float*); F77_RET_T F77_FUNC (qagi, QAGI) (quad_float_fcn_ptr, const float&, const octave_idx_type&, const float&, const float&, float&, float&, octave_idx_type&, octave_idx_type&, const octave_idx_type&, const octave_idx_type&, octave_idx_type&, octave_idx_type*, float*); } static octave_idx_type user_function (double *x, int& ierr, double *result) { BEGIN_INTERRUPT_WITH_EXCEPTIONS; #if defined (__sparc) && defined (__GNUC__) double xx = access_double (x); #else double xx = *x; #endif quad_integration_error = 0; double xresult = (*user_fcn) (xx); #if defined (__sparc) && defined (__GNUC__) assign_double (result, xresult); #else *result = xresult; #endif if (quad_integration_error) ierr = -1; END_INTERRUPT_WITH_EXCEPTIONS; return 0; } static octave_idx_type float_user_function (float *x, int& ierr, float *result) { BEGIN_INTERRUPT_WITH_EXCEPTIONS; quad_integration_error = 0; *result = (*float_user_fcn) (*x); if (quad_integration_error) ierr = -1; END_INTERRUPT_WITH_EXCEPTIONS; return 0; } double DefQuad::do_integrate (octave_idx_type& ier, octave_idx_type& neval, double& abserr) { octave_idx_type npts = singularities.capacity () + 2; double *points = singularities.fortran_vec (); double result = 0.0; octave_idx_type leniw = 183*npts - 122; Array<octave_idx_type> iwork (dim_vector (leniw, 1)); octave_idx_type *piwork = iwork.fortran_vec (); octave_idx_type lenw = 2*leniw - npts; Array<double> work (dim_vector (lenw, 1)); double *pwork = work.fortran_vec (); user_fcn = f; octave_idx_type last; double abs_tol = absolute_tolerance (); double rel_tol = relative_tolerance (); F77_XFCN (dqagp, DQAGP, (user_function, lower_limit, upper_limit, npts, points, abs_tol, rel_tol, result, abserr, neval, ier, leniw, lenw, last, piwork, pwork)); return result; } float DefQuad::do_integrate (octave_idx_type&, octave_idx_type&, float&) { (*current_liboctave_error_handler) ("incorrect integration function called"); return 0.0; } double IndefQuad::do_integrate (octave_idx_type& ier, octave_idx_type& neval, double& abserr) { double result = 0.0; octave_idx_type leniw = 128; Array<octave_idx_type> iwork (dim_vector (leniw, 1)); octave_idx_type *piwork = iwork.fortran_vec (); octave_idx_type lenw = 8*leniw; Array<double> work (dim_vector (lenw, 1)); double *pwork = work.fortran_vec (); user_fcn = f; octave_idx_type last; octave_idx_type inf; switch (type) { case bound_to_inf: inf = 1; break; case neg_inf_to_bound: inf = -1; break; case doubly_infinite: inf = 2; break; default: assert (0); break; } double abs_tol = absolute_tolerance (); double rel_tol = relative_tolerance (); F77_XFCN (dqagi, DQAGI, (user_function, bound, inf, abs_tol, rel_tol, result, abserr, neval, ier, leniw, lenw, last, piwork, pwork)); return result; } float IndefQuad::do_integrate (octave_idx_type&, octave_idx_type&, float&) { (*current_liboctave_error_handler) ("incorrect integration function called"); return 0.0; } double FloatDefQuad::do_integrate (octave_idx_type&, octave_idx_type&, double&) { (*current_liboctave_error_handler) ("incorrect integration function called"); return 0.0; } float FloatDefQuad::do_integrate (octave_idx_type& ier, octave_idx_type& neval, float& abserr) { octave_idx_type npts = singularities.capacity () + 2; float *points = singularities.fortran_vec (); float result = 0.0; octave_idx_type leniw = 183*npts - 122; Array<octave_idx_type> iwork (dim_vector (leniw, 1)); octave_idx_type *piwork = iwork.fortran_vec (); octave_idx_type lenw = 2*leniw - npts; Array<float> work (dim_vector (lenw, 1)); float *pwork = work.fortran_vec (); float_user_fcn = ff; octave_idx_type last; float abs_tol = single_precision_absolute_tolerance (); float rel_tol = single_precision_relative_tolerance (); F77_XFCN (qagp, QAGP, (float_user_function, lower_limit, upper_limit, npts, points, abs_tol, rel_tol, result, abserr, neval, ier, leniw, lenw, last, piwork, pwork)); return result; } double FloatIndefQuad::do_integrate (octave_idx_type&, octave_idx_type&, double&) { (*current_liboctave_error_handler) ("incorrect integration function called"); return 0.0; } float FloatIndefQuad::do_integrate (octave_idx_type& ier, octave_idx_type& neval, float& abserr) { float result = 0.0; octave_idx_type leniw = 128; Array<octave_idx_type> iwork (dim_vector (leniw, 1)); octave_idx_type *piwork = iwork.fortran_vec (); octave_idx_type lenw = 8*leniw; Array<float> work (dim_vector (lenw, 1)); float *pwork = work.fortran_vec (); float_user_fcn = ff; octave_idx_type last; octave_idx_type inf; switch (type) { case bound_to_inf: inf = 1; break; case neg_inf_to_bound: inf = -1; break; case doubly_infinite: inf = 2; break; default: assert (0); break; } float abs_tol = single_precision_absolute_tolerance (); float rel_tol = single_precision_relative_tolerance (); F77_XFCN (qagi, QAGI, (float_user_function, bound, inf, abs_tol, rel_tol, result, abserr, neval, ier, leniw, lenw, last, piwork, pwork)); return result; }