Mercurial > hg > octave-nkf
view test/diag-perm.tst @ 16033:23a7661e529a ss-3-7-2
snapshot version 3.7.2
* configure.ac (AC_INIT): Set version to 3.7.2.
(OCTAVE_RELEASE_DATE): Set to 2013-02-09.
(OCTAVE_COPYRIGHT): Update year.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sun, 10 Feb 2013 00:59:19 -0500 |
parents | 1af8d21608b7 |
children | d63878346099 |
line wrap: on
line source
## Copyright (C) 2009-2012 E. Jason Riedy ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ######################################## ## Permutation matrices ## row permutation %!test %! n = 5; %! A = rand (n); %! perm = randperm (n); %! Prow = eye (n) (perm, :); %! assert (A(perm, :), Prow * A); %! invperm(perm) = 1:n; %! assert (Prow \ A, A(invperm, :)); %! assert (Prow' * A, A(invperm, :)); ## column permutation %!test %! n = 7; %! A = rand (n); %! perm = randperm (n); %! Pcol = eye (n) (:, perm); %! assert (A(:, perm), A * Pcol); %! invperm(perm) = 1:n; %! assert (A / Pcol, A(:, invperm)); %! assert (A * Pcol.', A(:, invperm)); ## fall back to a matrix in addition %!test %! n = 4; %! P1 = eye (n) (:, randperm (n)); %! A = zeros (n) + P1; %! assert (sum (A), full (ones (1, n))); %! assert (sum (A, 2), full (ones (n, 1))); ## preserve dense matrix structure %!test %! n = 7; %! Pc = eye (n) (:, randperm (n)); %! Pr = eye (n) (randperm (n), :); %! assert (typeinfo (rand (n) * Pc), "matrix"); %! assert (typeinfo (Pr * rand (n)), "matrix"); ## preserve sparse matrix structure %!test %! n = 7; %! Pc = eye (n) (:, randperm (n)); %! Ac = sprand (n-3, n, .5) + I () * sprand (n-3, n, .5); %! Pr = eye (n) (randperm (n), :); %! Ar = sprand (n, n+2, .5); %! assert (typeinfo (Ac * Pc), "sparse complex matrix"); %! assert (full (Ac * Pc), full (Ac) * Pc); %! assert (full (Ac / Pc), full (Ac) / Pc); %! assert (typeinfo (Pr * Ar), "sparse matrix"); %! assert (full (Pr * Ar), Pr * full (Ar)); %! assert (full (Pr \ Ar), Pr \ full (Ar)); ## structure rules for 1x1 dense / scalar and 1x1 perm %!test %! n = 7; %! P1 = eye (1) (:, [1]); %! A1 = 1; %! P = eye (n) (:, randperm (n)); %! A = rand (n-3, n, .5); %! assert (typeinfo (A * P1), "matrix"); %! assert (full (A * P1), full (A) * P1); %! assert (typeinfo (P1 * A), "matrix"); %! assert (full (P1 * A), P1 * full (A)); %! assert (typeinfo (A1 * P), "matrix"); %! assert (full (A1 * P), full (A1) * P); %! assert (typeinfo (P * A1), "matrix"); %! assert (full (P * A1), P * full (A1)); ## structure rules for 1x1 sparse and 1x1 perm %!test %! n = 7; %! P1 = eye (1) (:, [1]); %! A1 = sparse (1, 1, 2); %! P = eye (n) (:, randperm (n)); %! A = sprand (n-3, n, .5); %! assert (typeinfo (A * P1), "sparse matrix"); %! assert (full (A * P1), full (A) * P1); %! assert (typeinfo (P1 * A), "sparse matrix"); %! assert (full (P1 * A), P1 * full (A)); %! assert (typeinfo (A1 * P), "sparse matrix"); %! assert (full (A1 * P), full (A1) * P); %! assert (typeinfo (P * A1), "sparse matrix"); %! assert (full (P * A1), P * full (A1)); ## permuting a matrix with exceptional values does not introduce new ones. %!test %! n = 5; %! pc = randperm (n); %! Pc = eye (n) (:, pc); %! pr = randperm (n); %! Pr = eye (n) (pr, :); %! A = rand (n); %! A(n, n-2) = NaN; %! A(3, 1) = Inf; %! assert (Pr * A * Pc, A(pr, pc)); ## conversion to sparse form %!test %! n = 7; %! P = eye (n) (:, randperm (n)); %! sP = sparse (P); %! assert (full (sP), full (P)); %! assert (size (find (sP), 1), n); %! [I, J, V] = find (sP); %! assert (all (V == 1)); ######################################## ## Diagonal matrices ## square row scaling %!test %! m = 7; %! n = 11; %! A = rand (m, n); %! scalefact = rand (m, 1); %! Dr = diag (scalefact); %! assert (Dr * A, repmat (scalefact, 1, n) .* A); %! assert (Dr \ A, A ./ repmat (scalefact, 1, n)); %! scalefact(m-1) = Inf; %! Dr(m-1, m-1) = 0; %! assert (Dr \ A, A ./ repmat (scalefact, 1, n)); ## square column scaling %!test %! m = 13; %! n = 11; %! A = rand (m, n); %! scalefact = rand (1, n); %! Dc = diag (scalefact); %! assert (A * Dc, repmat (scalefact, m, 1) .* A); %! assert (A / Dc, A ./ repmat (scalefact, m, 1)); %! scalefact(n-1) = Inf; %! Dc(n-1, n-1) = 0; %! assert (A / Dc, A ./ repmat (scalefact, m, 1)); ## arithmetic %!test %! m = 9; %! n = 7; %! mn = min (m, n); %! d1 = rand (mn, 1) + I () * rand (mn, 1); %! D1 = diag (d1, m, n); %! d2 = rand (mn, 1); %! D2 = diag (d2, m, n); %! D1D2 = D1 + D2; %! assert (typeinfo (D1D2), "complex diagonal matrix"); %! assert (diag (D1D2), d1 + d2); %! D1D2 = D2.' * D1; %! assert (typeinfo (D1D2), "complex diagonal matrix"); %! assert (diag (D1D2), d1 .* d2); ## slicing %!test %! m = 13; %! n = 6; %! mn = min (m, n); %! d = rand (mn, 1); %! D = diag (d, m, n); %! Dslice = D (1:(m-3), 1:(n-2)); %! assert (typeinfo (Dslice), "diagonal matrix"); ## preserve dense matrix structure when scaling %!assert (typeinfo (rand (8) * (3 * eye (8))), "matrix"); %!assert (typeinfo ((3 * eye (8)) * rand (8)), "matrix"); ## preserve sparse matrix structure when scaling %!assert (typeinfo (sprand (8, 8, .5) * (3 * eye (8))), "sparse matrix"); %!assert (typeinfo (sprand (8, 8, .5) * (3 * eye (8))'), "sparse matrix"); %!assert (typeinfo (((3 + 2 * I ()) * eye (8)) * sprand (8, 8, .5)), "sparse complex matrix"); %!assert (typeinfo (((3 + 2 * I ()) * eye (8))' * sprand (8, 8, .5)), "sparse complex matrix"); %!assert (typeinfo (sprand (8, 8, .5) * ((3 + 2 * I ()) * eye (8)).'), "sparse complex matrix"); ## scaling a matrix with exceptional values does not introduce new ones. %!test %! n = 6; %! dr = rand (n, 1); %! Dr = diag (dr); %! dc = rand (1, n); %! Dc = diag (dc); %! A = rand (n); %! A(n, n-2) = NaN; %! A(4, 1) = Inf; %! assert (Dr * A * Dc, A .* kron (dr, dc), eps); ## sparse inverse row scaling with a zero factor %!test %! n = 8; %! A = sprand (n, n, .5); %! scalefact = rand (n, 1); %! Dr = diag (scalefact); %! scalefact(n-1) = Inf; %! Dr(n-1, n-1) = 0; %! assert (full (Dr \ A), full (A) ./ repmat (scalefact, 1, n)); ## narrow sparse inverse row scaling %!test %! n = 8; %! A = sprand (n, n, .5); %! scalefact = rand (n-2, 1); %! Dr = diag (scalefact, n, n-2); %! assert (full (Dr \ A), Dr \ full(A)); ## sparse inverse column scaling with a zero factor %!test %! n = 11; %! A = sprand (n, n, .5); %! scalefact = rand (1, n); %! Dc = diag (scalefact); %! scalefact(n-1) = Inf; %! Dc(n-1, n-1) = 0; %! assert (full (A / Dc), full(A) / Dc); ## short sparse inverse column scaling %!test %! n = 7; %! A = sprand (n, n, .5); %! scalefact = rand (1, n-2) + I () * rand(1, n-2); %! Dc = diag (scalefact, n-2, n); %! assert (full (A / Dc), full(A) / Dc); ## adding sparse and diagonal stays sparse %!test %! n = 9; %! A = sprand (n, n, .5); %! D = 2 * eye (n); %! assert (typeinfo (A + D), "sparse matrix"); %! assert (typeinfo (A - D), "sparse matrix"); %! D = D * I () + D; %! assert (typeinfo (A - D), "sparse complex matrix"); %! A = A * I () + A; %! assert (typeinfo (D - A), "sparse complex matrix"); ## adding sparse and diagonal stays sparse %!test %! n = 9; %! A = sprand (n, n, .5); %! D = 2 * eye (n); %! assert (full (A + D), full (A) + D); %! assert (full (A - D), full (A) - D); %! D = D * I () + D; %! assert (full (D + A), D + full (A)); %! A = A * I () + A; %! A(6, 4) = nan (); %! assert (full (D - A), D - full (A));