Mercurial > hg > octave-nkf
view libinterp/corefcn/inv.cc @ 17296:3a9efb68272d ss-3-7-6
snapshot 3.7.6
* configure.ac (OCTAVE_VERSION): Bump to 3.7.6.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Tue, 20 Aug 2013 15:17:54 -0400 |
parents | 2fc554ffbc28 |
children | d63878346099 |
line wrap: on
line source
/* Copyright (C) 1996-2012 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "ops.h" #include "ov-re-diag.h" #include "ov-cx-diag.h" #include "ov-flt-re-diag.h" #include "ov-flt-cx-diag.h" #include "ov-perm.h" #include "utils.h" DEFUN (inv, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{x} =} inv (@var{A})\n\ @deftypefnx {Built-in Function} {[@var{x}, @var{rcond}] =} inv (@var{A})\n\ Compute the inverse of the square matrix @var{A}. Return an estimate\n\ of the reciprocal condition number if requested, otherwise warn of an\n\ ill-conditioned matrix if the reciprocal condition number is small.\n\ \n\ In general it is best to avoid calculating the inverse of a matrix\n\ directly. For example, it is both faster and more accurate to solve\n\ systems of equations (@var{A}*@math{x} = @math{b}) with\n\ @code{@var{y} = @var{A} \\ @math{b}}, rather than\n\ @code{@var{y} = inv (@var{A}) * @math{b}}.\n\ \n\ If called with a sparse matrix, then in general @var{x} will be a full\n\ matrix requiring significantly more storage. Avoid forming the inverse\n\ of a sparse matrix if possible.\n\ @seealso{ldivide, rdivide}\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 1) { print_usage (); return retval; } octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); int arg_is_empty = empty_arg ("inverse", nr, nc); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return octave_value (Matrix ()); if (nr != nc) { gripe_square_matrix_required ("inverse"); return retval; } octave_value result; octave_idx_type info; double rcond = 0.0; float frcond = 0.0; bool isfloat = arg.is_single_type (); if (arg.is_diag_matrix ()) { rcond = 1.0; frcond = 1.0f; if (arg.is_complex_type ()) { if (isfloat) { result = arg.float_complex_diag_matrix_value ().inverse (info); if (nargout > 1) frcond = arg.float_complex_diag_matrix_value ().rcond (); } else { result = arg.complex_diag_matrix_value ().inverse (info); if (nargout > 1) rcond = arg.complex_diag_matrix_value ().rcond (); } } else { if (isfloat) { result = arg.float_diag_matrix_value ().inverse (info); if (nargout > 1) frcond = arg.float_diag_matrix_value ().rcond (); } else { result = arg.diag_matrix_value ().inverse (info); if (nargout > 1) rcond = arg.diag_matrix_value ().rcond (); } } } else if (arg.is_perm_matrix ()) { rcond = 1.0; info = 0; result = arg.perm_matrix_value ().inverse (); } else if (isfloat) { if (arg.is_real_type ()) { FloatMatrix m = arg.float_matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, frcond, 1); args(0).matrix_type (mattyp); } } else if (arg.is_complex_type ()) { FloatComplexMatrix m = arg.float_complex_matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, frcond, 1); args(0).matrix_type (mattyp); } } } else { if (arg.is_real_type ()) { if (arg.is_sparse_type ()) { SparseMatrix m = arg.sparse_matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, rcond, 1); args(0).matrix_type (mattyp); } } else { Matrix m = arg.matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, rcond, 1); args(0).matrix_type (mattyp); } } } else if (arg.is_complex_type ()) { if (arg.is_sparse_type ()) { SparseComplexMatrix m = arg.sparse_complex_matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, rcond, 1); args(0).matrix_type (mattyp); } } else { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, rcond, 1); args(0).matrix_type (mattyp); } } } else gripe_wrong_type_arg ("inv", arg); } if (! error_state) { if (nargout > 1) retval(1) = isfloat ? octave_value (frcond) : octave_value (rcond); retval(0) = result; volatile double xrcond = rcond; xrcond += 1.0; if (nargout < 2 && (info == -1 || xrcond == 1.0)) warning ("inverse: matrix singular to machine precision, rcond = %g", rcond); } return retval; } /* %!assert (inv ([1, 2; 3, 4]), [-2, 1; 1.5, -0.5], sqrt (eps)) %!assert (inv (single ([1, 2; 3, 4])), single ([-2, 1; 1.5, -0.5]), sqrt (eps ("single"))) %!error inv () %!error inv ([1, 2; 3, 4], 2) %!error <argument must be a square matrix> inv ([1, 2; 3, 4; 5, 6]) */ // FIXME -- this should really be done with an alias, but // alias_builtin() won't do the right thing if we are actually using // dynamic linking. DEFUN (inverse, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{x} =} inverse (@var{A})\n\ @deftypefnx {Built-in Function} {[@var{x}, @var{rcond}] =} inverse (@var{A})\n\ Compute the inverse of the square matrix @var{A}.\n\ \n\ This is an alias for @code{inv}.\n\ @seealso{inv}\n\ @end deftypefn") { return Finv (args, nargout); }