Mercurial > hg > octave-nkf
view liboctave/numeric/SparseCmplxCHOL.cc @ 20809:ffc6cdcd02c5 stable
Fix segfault when complex double matrix calls ZGETRF (bug #45577).
* CMatrix.cc (finverse, determinant, rcond, fsolve): Calculate norm of matrix
and if it is NaN, skip calling ZGETRF in LAPACK and set info to non-zero value
to signal an error.
author | Rik <rik@octave.org> |
---|---|
date | Sat, 10 Oct 2015 16:46:00 -0700 |
parents | 4197fc428c7d |
children |
line wrap: on
line source
/* Copyright (C) 2005-2015 David Bateman Copyright (C) 1998-2005 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "SparseCmplxCHOL.h" // Instantiate the base CHOL class for the type we need #define OCTAVE_CHOLMOD_TYPE CHOLMOD_COMPLEX #include "sparse-base-chol.h" #include "sparse-base-chol.cc" template class sparse_base_chol <SparseComplexMatrix, Complex, SparseMatrix>; // Compute the inverse of a matrix using the Cholesky factorization. SparseComplexMatrix chol2inv (const SparseComplexMatrix& r) { octave_idx_type r_nr = r.rows (); octave_idx_type r_nc = r.cols (); SparseComplexMatrix retval; if (r_nr == r_nc) { MatrixType mattype (r); int typ = mattype.type (false); double rcond; octave_idx_type info; SparseComplexMatrix rinv; if (typ == MatrixType::Upper) { rinv = r.inverse (mattype, info, rcond, true, false); retval = rinv.transpose () * rinv; } else if (typ == MatrixType::Lower) { rinv = r.transpose ().inverse (mattype, info, rcond, true, false); retval = rinv.transpose () * rinv; } else (*current_liboctave_error_handler) ("U must be a triangular matrix"); } else (*current_liboctave_error_handler) ("U must be a square matrix"); return retval; }