Mercurial > hg > octave-nkf
changeset 3367:0748b03c3510
[project @ 1999-11-20 14:52:38 by jwe]
author | jwe |
---|---|
date | Sat, 20 Nov 1999 14:52:42 +0000 |
parents | abdd5ed1bb4e |
children | a4cd1e9d9962 |
files | doc/interpreter/signal.txi doc/interpreter/stats.txi scripts/ChangeLog scripts/signal/detrend.m scripts/signal/fftconv.m scripts/signal/fftfilt.m scripts/signal/freqz.m scripts/signal/sinc.m scripts/statistics/base/corrcoef.m scripts/statistics/base/cov.m scripts/statistics/base/kurtosis.m scripts/statistics/base/mahalanobis.m scripts/statistics/base/mean.m scripts/statistics/base/median.m scripts/statistics/base/skewness.m scripts/statistics/base/std.m src/ChangeLog src/DLD-FUNCTIONS/fft.cc src/DLD-FUNCTIONS/fft2.cc src/DLD-FUNCTIONS/filter.cc src/DLD-FUNCTIONS/ifft.cc src/DLD-FUNCTIONS/ifft2.cc src/Makefile.in |
diffstat | 23 files changed, 396 insertions(+), 456 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/interpreter/signal.txi +++ b/doc/interpreter/signal.txi @@ -9,215 +9,22 @@ functions. If you would like to help improve Octave in this area, please contact @email{bug-octave@@bevo.che.wisc.edu}. -@deftypefn {Function File} {} detrend (@var{x}, @var{p}) -If @var{x} is a vector, @code{detrend (@var{x}, @var{p})} removes the -best fit of a polynomial of order @var{p} from the data @var{x}. - -If @var{x} is a matrix, @code{detrend (@var{x}, @var{p})} does the same -for each column in @var{x}. - -The second argument is optional. If it is not specified, a value of 1 -is assumed. This corresponds to removing a linear trend. -@end deftypefn - -@deftypefn {Function} {} fft (@var{a}, @var{n}) -Compute the FFT of @var{a} using subroutines from @sc{Fftpack}. If @var{a} -is a matrix, @code{fft} computes the FFT for each column of @var{a}. +@DOCSTRING(detrend) -If called with two arguments, @var{n} is expected to be an integer -specifying the number of elements of @var{a} to use. If @var{a} is a -matrix, @var{n} specifies the number of rows of @var{a} to use. If -@var{n} is larger than the size of @var{a}, @var{a} is resized and -padded with zeros. -@end deftypefn - -@deftypefn {Loadable Function} {} ifft (@var{a}, @var{n}) -Compute the inverse FFT of @var{a} using subroutines from @sc{Fftpack}. If -@var{a} is a matrix, @code{fft} computes the inverse FFT for each column -of @var{a}. - -If called with two arguments, @var{n} is expected to be an integer -specifying the number of elements of @var{a} to use. If @var{a} is a -matrix, @var{n} specifies the number of rows of @var{a} to use. If -@var{n} is larger than the size of @var{a}, @var{a} is resized and -padded with zeros. -@end deftypefn - -@deftypefn {Loadable Function} {} fft2 (@var{a}, @var{n}, @var{m}) -Compute the two dimensional FFT of @var{a}. - -The optional arguments @var{n} and @var{m} may be used specify the -number of rows and columns of @var{a} to use. If either of these is -larger than the size of @var{a}, @var{a} is resized and padded with -zeros. -@end deftypefn +@DOCSTRING(fft) -@deftypefn {Loadable Function} {} ifft2 (@var{a}, @var{n}, @var{m}) -Compute the two dimensional inverse FFT of @var{a}. - -The optional arguments @var{n} and @var{m} may be used specify the -number of rows and columns of @var{a} to use. If either of these is -larger than the size of @var{a}, @var{a} is resized and padded with -zeros. -@end deftypefn - -@deftypefn {Built-in Function} {} fftconv (@var{a}, @var{b}, @var{n}) -Return the convolution of the vectors @var{a} and @var{b}, as a vector -with length equal to the @code{length (a) + length (b) - 1}. If @var{a} -and @var{b} are the coefficient vectors of two polynomials, the returned -value is the coefficient vector of the product polynomial. - -The computation uses the FFT by calling the function @code{fftfilt}. If -the optional argument @var{n} is specified, an N-point FFT is used. -@end deftypefn - -@deftypefn {Function File} {} fftfilt (@var{b}, @var{x}, @var{n}) - -With two arguments, @code{fftfilt} filters @var{x} with the FIR filter -@var{b} using the FFT. +@DOCSTRING(ifft) -Given the optional third argument, @var{n}, @code{fftfilt} uses the -overlap-add method to filter @var{x} with @var{b} using an N-point FFT. -@end deftypefn +@DOCSTRING(fft2) -@deftypefn {Loadable Function} {y =} filter (@var{b}, @var{a}, @var{x}) -Return the solution to the following linear, time-invariant difference -equation: -@iftex -@tex -$$ -\sum_{k=0}^N a_{k+1} y_{n-k} = \sum_{k=0}^M b_{k+1} x_{n-k}, \qquad - 1 \le n \le P -$$ -@end tex -@end iftex -@ifinfo - -@smallexample - N M - SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k) for 1<=n<=length(x) - k=0 k=0 -@end smallexample -@end ifinfo +@DOCSTRING(ifft2) -@noindent -where -@ifinfo - N=length(a)-1 and M=length(b)-1. -@end ifinfo -@iftex -@tex - $a \in \Re^{N-1}$, $b \in \Re^{M-1}$, and $x \in \Re^P$. -@end tex -@end iftex -An equivalent form of this equation is: -@iftex -@tex -$$ -y_n = -\sum_{k=1}^N c_{k+1} y_{n-k} + \sum_{k=0}^M d_{k+1} x_{n-k}, \qquad - 1 \le n \le P -$$ -@end tex -@end iftex -@ifinfo +@DOCSTRING(fftconv) -@smallexample - N M - y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k) for 1<=n<=length(x) - k=1 k=0 -@end smallexample -@end ifinfo - -@noindent -where -@ifinfo - c = a/a(1) and d = b/a(1). -@end ifinfo -@iftex -@tex -$c = a/a_1$ and $d = b/a_1$. -@end tex -@end iftex - -In terms of the z-transform, y is the result of passing the discrete- -time signal x through a system characterized by the following rational -system function: -@iftex -@tex -$$ -H(z) = {\displaystyle\sum_{k=0}^M d_{k+1} z^{-k} - \over 1 + \displaystyle\sum_{k+1}^N c_{k+1} z^{-k}} -$$ -@end tex -@end iftex -@ifinfo +@DOCSTRING(fftfilt) -@example - M - SUM d(k+1) z^(-k) - k=0 - H(z) = ---------------------- - N - 1 + SUM c(k+1) z(-k) - k=1 -@end example -@end ifinfo -@end deftypefn - -@deftypefn {Loadable Function} {[@var{y}, @var{sf}] =} filter (@var{b}, @var{a}, @var{x}, @var{si}) -This is the same as the @code{filter} function described above, except -that @var{si} is taken as the initial state of the system and the final -state is returned as @var{sf}. The state vector is a column vector -whose length is equal to the length of the longest coefficient vector -minus one. If @var{si} is not set, the initial state vector is set to -all zeros. -@end deftypefn - -@deftypefn {Function File} {[@var{h}, @var{w}] =} freqz (@var{b}, @var{a}, @var{n}, "whole") -Return the complex frequency response @var{h} of the rational IIR filter -whose numerator and denominator coefficients are @var{b} and @var{a}, -respectively. The response is evaluated at @var{n} angular frequencies -between 0 and -@ifinfo - 2*pi. -@end ifinfo -@iftex -@tex - $2\pi$. -@end tex -@end iftex +@DOCSTRING(filter) -@noindent -The output value @var{w} is a vector of the frequencies. - -If the fourth argument is omitted, the response is evaluated at -frequencies between 0 and -@ifinfo - pi. -@end ifinfo -@iftex -@tex - $\pi$. -@end tex -@end iftex - -If @var{n} is omitted, a value of 512 is assumed. +@DOCSTRING(freqz) -If @var{a} is omitted, the denominator is assumed to be 1 (this -corresponds to a simple FIR filter). - -For fastest computation, @var{n} should factor into a small number of -small primes. -@end deftypefn - -@deftypefn {Function File} {} sinc (@var{x}) -Return -@iftex -@tex -$ \sin (\pi x)/(\pi x)$. -@end tex -@end iftex -@ifinfo - sin(pi*x)/(pi*x). -@end ifinfo -@end deftypefn +@DOCSTRING(sinc)
--- a/doc/interpreter/stats.txi +++ b/doc/interpreter/stats.txi @@ -9,132 +9,18 @@ you would like to help improve Octave in this area, please contact @email{bug-octave@@bevo.che.wisc.edu}. -@deftypefn {Function File} {} mean (@var{x}) -If @var{x} is a vector, compute the mean of the elements of @var{x} -@iftex -@tex -$$ {\rm mean}(x) = \bar{x} = {1\over N} \sum_{i=1}^N x_i $$ -@end tex -@end iftex -@ifinfo +@DOCSTRING(mean) -@example -mean (x) = SUM_i x(i) / N -@end example -@end ifinfo -If @var{x} is a matrix, compute the mean for each column and return them -in a row vector. -@end deftypefn - -@deftypefn {Function File} {} median (@var{x}) -If @var{x} is a vector, compute the median value of the elements of -@var{x}. -@iftex -@tex -$$ -{\rm median} (x) = - \cases{x(\lceil N/2\rceil), & $N$ odd;\cr - (x(N/2)+x(N/2+1))/2, & $N$ even.} -$$ -@end tex -@end iftex -@ifinfo +@DOCSTRING(median) -@example -@group - x(ceil(N/2)), N odd -median(x) = - (x(N/2) + x((N/2)+1))/2, N even -@end group -@end example -@end ifinfo -If @var{x} is a matrix, compute the median value for each -column and return them in a row vector. -@end deftypefn +@DOCSTRING(std) -@deftypefn {Function File} {} std (@var{x}) -If @var{x} is a vector, compute the standard deviation of the elements -of @var{x}. -@iftex -@tex -$$ -{\rm std} (x) = \sigma (x) = \sqrt{{\sum_{i=1}^N (x_i - \bar{x}) \over N - 1}} -$$ -@end tex -@end iftex -@ifinfo - -@example -@group -std (x) = sqrt (sumsq (x - mean (x)) / (n - 1)) -@end group -@end example -@end ifinfo -If @var{x} is a matrix, compute the standard deviation for -each column and return them in a row vector. -@end deftypefn +@DOCSTRING(cov) -@deftypefn {Function File} {} cov (@var{x}, @var{y}) -If each row of @var{x} and @var{y} is an observation and each column is -a variable, the (@var{i},@var{j})-th entry of -@code{cov (@var{x}, @var{y})} is the covariance between the @var{i}-th -variable in @var{x} and the @var{j}-th variable in @var{y}. If called -with one argument, compute @code{cov (@var{x}, @var{x})}. -@end deftypefn - -@deftypefn {Function File} {} corrcoef (@var{x}, @var{y}) -If each row of @var{x} and @var{y} is an observation and each column is -a variable, the (@var{i},@var{j})-th entry of -@code{corrcoef (@var{x}, @var{y})} is the correlation between the -@var{i}-th variable in @var{x} and the @var{j}-th variable in @var{y}. -If called with one argument, compute @code{corrcoef (@var{x}, @var{x})}. -@end deftypefn +@DOCSTRING(corrcoef) -@deftypefn {Function File} {} kurtosis (@var{x}) -If @var{x} is a vector of length @var{N}, return the kurtosis -@iftex -@tex -$$ - {\rm kurtosis} (x) = {1\over N \sigma(x)^4} \sum_{i=1}^N (x_i-\bar{x})^4 - 3 -$$ -@end tex -@end iftex -@ifinfo - -@example -kurtosis (x) = N^(-1) std(x)^(-4) sum ((x - mean(x)).^4) - 3 -@end example -@end ifinfo +@DOCSTRING(kurtosis) -@noindent -of @var{x}. If @var{x} is a matrix, return the row vector containing -the kurtosis of each column. -@end deftypefn - -@deftypefn {Function File} {} mahalanobis (@var{x}, @var{y}) -Return the Mahalanobis' D-square distance between the multivariate -samples @var{x} and @var{y}, which must have the same number of -components (columns), but may have a different number of observations -(rows). -@end deftypefn +@DOCSTRING(mahalanobis) -@deftypefn {Function File} {} skewness (@var{x}) -If @var{x} is a vector of length @var{N}, return the skewness -@iftex -@tex -$$ -{\rm skewness} (x) = {1\over N \sigma(x)^3} \sum_{i=1}^N (x_i-\bar{x})^3 -$$ -@end tex -@end iftex -@ifinfo - -@example -skewness (x) = N^(-1) std(x)^(-3) sum ((x - mean(x)).^3) -@end example -@end ifinfo - -@noindent -of @var{x}. If @var{x} is a matrix, return the row vector containing -the skewness of each column. -@end deftypefn +@DOCSTRING(skewness)
--- a/scripts/ChangeLog +++ b/scripts/ChangeLog @@ -1,3 +1,19 @@ +1999-11-20 John W. Eaton <jwe@bevo.che.wisc.edu> + + * statistics/base/mean: Texinfoize doc string. + * statistics/base/median: Ditto. + * statistics/base/std: Ditto. + * statistics/base/cov: Ditto. + * statistics/base/corrcoef: Ditto. + * statistics/base/kurtosis: Ditto. + * statistics/base/mahalanobis: Ditto. + * statistics/base/skewness: Ditto. + * signal/detrend.m: Ditto. + * signal/freqz.m: Ditto. + * signal/sinc.m: Ditto. + * signal/fftconv.m: Ditto. + * signal/fftfilt.m: Ditto. + 1999-11-19 John W. Eaton <jwe@bevo.che.wisc.edu> * control/pinv.m: Delete.
--- a/scripts/signal/detrend.m +++ b/scripts/signal/detrend.m @@ -14,15 +14,16 @@ ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. -## usage: detrend (x [, p]) -## -## If x is a vector, detrend (x, p) removes the best fit of a -## polynomial of order p from the data x. -## -## If x is a matrix, detrend (x, p) does the same for each column. -## -## If p is not specified, p = 1 is used, i.e., a linear trend is -## removed. +## @deftypefn {Function File} {} detrend (@var{x}, @var{p}) +## If @var{x} is a vector, @code{detrend (@var{x}, @var{p})} removes the +## best fit of a polynomial of order @var{p} from the data @var{x}. +## +## If @var{x} is a matrix, @code{detrend (@var{x}, @var{p})} does the same +## for each column in @var{x}. +## +## The second argument is optional. If it is not specified, a value of 1 +## is assumed. This corresponds to removing a linear trend. +## @end deftypefn ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Created: 11 October 1994
--- a/scripts/signal/fftconv.m +++ b/scripts/signal/fftconv.m @@ -17,15 +17,16 @@ ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. -## usage: fftconv (a, b [, N]) -## -## c = fftconv (a, b) returns the convolution of the vectors a and b, -## a vector with length equal to length (a) + length (b) - 1. -## If a and b are the coefficient vectors of two polynomials, c is -## the coefficient vector of the product polynomial. -## -## The computation uses the FFT by calling fftfilt. If the optional -## argument N is specified, an N-point FFT is used. +## -*- texinfo -*- +## @deftypefn {Function File} {} fftconv (@var{a}, @var{b}, @var{n}) +## Return the convolution of the vectors @var{a} and @var{b}, as a vector +## with length equal to the @code{length (a) + length (b) - 1}. If @var{a} +## and @var{b} are the coefficient vectors of two polynomials, the returned +## value is the coefficient vector of the product polynomial. +## +## The computation uses the FFT by calling the function @code{fftfilt}. If +## the optional argument @var{n} is specified, an N-point FFT is used. +## @end deftypefn ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Created: 3 September 1994
--- a/scripts/signal/fftfilt.m +++ b/scripts/signal/fftfilt.m @@ -17,14 +17,15 @@ ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. -## usage: fftfilt (b, x [, N]) -## -## y = fftfilt (b, x) filters x with the FIR filter b using the FFT. -## y = fftfilt (b, x, N) uses the overlap-add method to filter x with -## b using an N-point FFT. -## -## Reference: Oppenheim & Schafer (1989). Discrete-time Signal -## Processing (Chapter 8). Prentice-Hall. +## -*- texinfo -*- +## @deftypefn {Function File} {} fftfilt (@var{b}, @var{x}, @var{n}) +## +## With two arguments, @code{fftfilt} filters @var{x} with the FIR filter +## @var{b} using the FFT. +## +## Given the optional third argument, @var{n}, @code{fftfilt} uses the +## overlap-add method to filter @var{x} with @var{b} using an N-point FFT. +## @end deftypefn ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Created: 3 September 1994
--- a/scripts/signal/freqz.m +++ b/scripts/signal/freqz.m @@ -17,25 +17,45 @@ ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. -## Compute the frequency response of a filter. -## -## [h,w] = resp(b) -## returns the complex frequency response h of the FIR filter with -## coefficients b. The response is evaluated at 512 angular frequencies -## between 0 and pi. w is a vector containing the 512 frequencies. -## -## [h,w] = resp(b,a) -## returns the complex frequency response of the rational IIR filter -## whose numerator has coefficients b and denominator coefficients a. -## -## [h,w] = resp(b,a,n) -## returns the response evaluated at n angular frequencies. For fastest -## computation n should factor into a small number of small primes. -## -## [h,w] = freqz(b,a,n,"whole") -## evaluates the response at n frequencies between 0 and 2*pi. +## -*- texinfo -*- +## @deftypefn {Function File} {[@var{h}, @var{w}] =} freqz (@var{b}, @var{a}, @var{n}, "whole") +## Return the complex frequency response @var{h} of the rational IIR filter +## whose numerator and denominator coefficients are @var{b} and @var{a}, +## respectively. The response is evaluated at @var{n} angular frequencies +## between 0 and +## @ifinfo +## 2*pi. +## @end ifinfo +## @iftex +## @tex +## $2\pi$. +## @end tex +## @end iftex +## +## @noindent +## The output value @var{w} is a vector of the frequencies. +## +## If the fourth argument is omitted, the response is evaluated at +## frequencies between 0 and +## @ifinfo +## pi. +## @end ifinfo +## @iftex +## @tex +## $\pi$. +## @end tex +## @end iftex +## +## If @var{n} is omitted, a value of 512 is assumed. +## +## If @var{a} is omitted, the denominator is assumed to be 1 (this +## corresponds to a simple FIR filter). +## +## For fastest computation, @var{n} should factor into a small number of +## small primes. +## @end deftypefn -## Author: jwe +## Author: jwe ??? function [h, w] = freqz(b,...)
--- a/scripts/signal/sinc.m +++ b/scripts/signal/sinc.m @@ -17,11 +17,20 @@ ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. -## usage: sinc(x) -## -## Returns sin(pi*x)/(pi*x). +## -*- texinfo -*- +## @deftypefn {Function File} {} sinc (@var{x}) +## Return +## @iftex +## @tex +## $ \sin (\pi x)/(\pi x)$. +## @end tex +## @end iftex +## @ifinfo +## sin(pi*x)/(pi*x). +## @end ifinfo +## @end deftypefn -## Author: jwe +## Author: jwe ??? function result = sinc (x)
--- a/scripts/statistics/base/corrcoef.m +++ b/scripts/statistics/base/corrcoef.m @@ -17,13 +17,14 @@ ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. -## usage: corrcoef (x, y) -## -## The (i,j)-th entry of corrcoef (x, y) is the correlation between the -## i-th variable in x and the j-th variable in y. -## For matrices, each row is an observation and each column a variable; -## vectors are always observations and may be row or column vectors. -## corrcoef (x) is corrcoef (x, x). +## -*- texinfo -*- +## @deftypefn {Function File} {} corrcoef (@var{x}, @var{y}) +## If each row of @var{x} and @var{y} is an observation and each column is +## a variable, the (@var{i},@var{j})-th entry of +## @code{corrcoef (@var{x}, @var{y})} is the correlation between the +## @var{i}-th variable in @var{x} and the @var{j}-th variable in @var{y}. +## If called with one argument, compute @code{corrcoef (@var{x}, @var{x})}. +## @end deftypefn ## Author: Kurt Hornik <hornik@ci.tuwien.ac.at> ## Created: March 1993
--- a/scripts/statistics/base/cov.m +++ b/scripts/statistics/base/cov.m @@ -14,15 +14,14 @@ ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. -## usage: cov (x [, y]) -## -## The (i,j)-th entry of cov (x, y) is the covariance between the i-th -## variable in x and the j-th variable in y. -## -## For matrices, each row is an observation and each column a variable; -## vectors are always observations and may be row or column vectors. -## -## cov (x) is cov (x, x). +## -*- texinfo -*- +## @deftypefn {Function File} {} cov (@var{x}, @var{y}) +## If each row of @var{x} and @var{y} is an observation and each column is +## a variable, the (@var{i},@var{j})-th entry of +## @code{cov (@var{x}, @var{y})} is the covariance between the @var{i}-th +## variable in @var{x} and the @var{j}-th variable in @var{y}. If called +## with one argument, compute @code{cov (@var{x}, @var{x})}. +## @end deftypefn ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Description: Compute covariances
--- a/scripts/statistics/base/kurtosis.m +++ b/scripts/statistics/base/kurtosis.m @@ -17,16 +17,27 @@ ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. -## usage: kurtosis (x) -## -## If x is a vector of length N, return the kurtosis -## -## kurtosis(x) = N^(-1) std(x)^(-4) SUM_i (x(i)-mean(x))^4 - 3 -## -## of x. -## -## If x is a matrix, return a row vector containing the kurtosis for each -## column. +## -*- texinfo -*- +## @deftypefn {Function File} {} kurtosis (@var{x}) +## If @var{x} is a vector of length @var{N}, return the kurtosis +## @iftex +## @tex +## $$ +## {\rm kurtosis} (x) = {1\over N \sigma(x)^4} \sum_{i=1}^N (x_i-\bar{x})^4 - 3 +## $$ +## @end tex +## @end iftex +## @ifinfo +## +## @example +## kurtosis (x) = N^(-1) std(x)^(-4) sum ((x - mean(x)).^4) - 3 +## @end example +## @end ifinfo +## +## @noindent +## of @var{x}. If @var{x} is a matrix, return the row vector containing +## the kurtosis of each column. +## @end deftypefn ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Created: 29 July 1994
--- a/scripts/statistics/base/mahalanobis.m +++ b/scripts/statistics/base/mahalanobis.m @@ -17,11 +17,13 @@ ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. -## usage: mahalanobis (X, Y) -## -## Returns Mahalanobis' D-square distance between the multivariate -## samples X and Y, which must have the same number of components -## (columns), but may have a different number of observations (rows). +## -*- texinfo -*- +## @deftypefn {Function File} {} mahalanobis (@var{x}, @var{y}) +## Return the Mahalanobis' D-square distance between the multivariate +## samples @var{x} and @var{y}, which must have the same number of +## components (columns), but may have a different number of observations +## (rows). +## @end deftypefn ## Author: Friedrich Leisch <leisch@ci.tuwien.ac.at> ## Created: July 1993
--- a/scripts/statistics/base/mean.m +++ b/scripts/statistics/base/mean.m @@ -14,18 +14,37 @@ ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. -## usage: mean (x [, opt]) -## -## For vector arguments, return the mean the values. -## For matrix arguments, return a row vector containing the mean for -## each column. +## -*- texinfo -*- +## @deftypefn {Function File} {} mean (@var{x}, @var{opt}) +## If @var{x} is a vector, compute the mean of the elements of @var{x} +## @iftex +## @tex +## $$ {\rm mean}(x) = \bar{x} = {1\over N} \sum_{i=1}^N x_i $$ +## @end tex +## @end iftex +## @ifinfo +## +## @example +## mean (x) = SUM_i x(i) / N +## @end example +## @end ifinfo +## If @var{x} is a matrix, compute the mean for each column and return them +## in a row vector. ## -## With the optional argument opt, the kind of mean computed can be -## selected. -## If opt is "a", the (ordinary) arithmetic mean is computed. This -## is the default. -## If opt is "g", the geometric mean is computed. -## If opt is "h", the harmonic mean is computed. +## With the optional argument @var{opt}, the kind of mean computed can be +## selected. The following options are recognized: +## +## @table @code +## @item "a" +## Compute the (ordinary) arithmetic mean. This is the default. +## +## @item "g" +## Computer the geometric mean. +## +## @item "h" +## Compute the harmonic mean. +## @end table +## @end deftypefn ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Description: Compute arithmetic, geometric, and harmonic mean
--- a/scripts/statistics/base/median.m +++ b/scripts/statistics/base/median.m @@ -17,13 +17,33 @@ ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. -## usage: median (a) -## -## For vector arguments, return the median of the values. -## -## For matrix arguments, return a row vector containing the median for -## each column. -## +## -*- texinfo -*- +## @deftypefn {Function File} {} median (@var{x}) +## If @var{x} is a vector, compute the median value of the elements of +## @var{x}. +## @iftex +## @tex +## $$ +## {\rm median} (x) = +## \cases{x(\lceil N/2\rceil), & $N$ odd;\cr +## (x(N/2)+x(N/2+1))/2, & $N$ even.} +## $$ +## @end tex +## @end iftex +## @ifinfo +## +## @example +## @group +## x(ceil(N/2)), N odd +## median(x) = +## (x(N/2) + x((N/2)+1))/2, N even +## @end group +## @end example +## @end ifinfo +## If @var{x} is a matrix, compute the median value for each +## column and return them in a row vector. +## @end deftypefn + ## See also: std, mean ## Author: jwe
--- a/scripts/statistics/base/skewness.m +++ b/scripts/statistics/base/skewness.m @@ -17,16 +17,27 @@ ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. -## usage: skewness (x) -## -## If x is a vector of length N, return the skewness -## -## skewness (x) = N^(-1) std(x)^(-3) SUM_i (x(i)-mean(x))^3 -## -## of x. -## -## If x is a matrix, return a row vector containing the skewness for each -## column. +## -*- texinfo -*- +## @deftypefn {Function File} {} skewness (@var{x}) +## If @var{x} is a vector of length @var{N}, return the skewness +## @iftex +## @tex +## $$ +## {\rm skewness} (x) = {1\over N \sigma(x)^3} \sum_{i=1}^N (x_i-\bar{x})^3 +## $$ +## @end tex +## @end iftex +## @ifinfo +## +## @example +## skewness (x) = N^(-1) std(x)^(-3) sum ((x - mean(x)).^3) +## @end example +## @end ifinfo +## +## @noindent +## of @var{x}. If @var{x} is a matrix, return the row vector containing +## the skewness of each column. +## @end deftypefn ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Created: 29 July 1994
--- a/scripts/statistics/base/std.m +++ b/scripts/statistics/base/std.m @@ -17,12 +17,29 @@ ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. -## usage: std (a) -## -## For vector arguments, std returns the standard deviation of the -## values. For matrix arguments, std returns a row vector containing -## the standard deviation for each column. -## +## -*- texinfo -*- +## @deftypefn {Function File} {} std (@var{x}) +## If @var{x} is a vector, compute the standard deviation of the elements +## of @var{x}. +## @iftex +## @tex +## $$ +## {\rm std} (x) = \sigma (x) = \sqrt{{\sum_{i=1}^N (x_i - \bar{x}) \over N - 1}} +## $$ +## @end tex +## @end iftex +## @ifinfo +## +## @example +## @group +## std (x) = sqrt (sumsq (x - mean (x)) / (n - 1)) +## @end group +## @end example +## @end ifinfo +## If @var{x} is a matrix, compute the standard deviation for +## each column and return them in a row vector. +## @end deftypefn + ## See also: mean, median ## Author: jwe
--- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,13 @@ +1999-11-20 John W. Eaton <jwe@bevo.che.wisc.edu> + + * DLD-FUNCTIONS/fft.cc: Texinfoize doc string. + * DLD-FUNCTIONS/ifft.cc: Ditto. + * DLD-FUNCTIONS/fft2.cc: Ditto. + * DLD-FUNCTIONS/ifft2.cc: Ditto. + * DLD-FUNCTIONS/filter.cc: Ditto. + + * Makefile.in (parse.cc): Expect 11 shift/reduce conflicts now. + 1999-11-19 John W. Eaton <jwe@bevo.che.wisc.edu> * parse.y (Vwarn_assign_as_truth_value, Vwarn_variable_switch_label):
--- a/src/DLD-FUNCTIONS/fft.cc +++ b/src/DLD-FUNCTIONS/fft.cc @@ -35,7 +35,17 @@ // This function should be merged with Fifft. DEFUN_DLD (fft, args, , - "fft (X [, N]): fast fourier transform of a vector") + "-*- texinfo -*-\n\ +@deftypefn {Loadable Function} {} fft (@var{a}, @var{n})\n\ +Compute the FFT of @var{a} using subroutines from @sc{Fftpack}. If @var{a}\n\ +is a matrix, @code{fft} computes the FFT for each column of @var{a}.\n\ +\n\ +If called with two arguments, @var{n} is expected to be an integer\n\ +specifying the number of elements of @var{a} to use. If @var{a} is a\n\ +matrix, @var{n} specifies the number of rows of @var{a} to use. If\n\ +@var{n} is larger than the size of @var{a}, @var{a} is resized and\n\ +padded with zeros.\n\ +@end deftypefn") { octave_value_list retval;
--- a/src/DLD-FUNCTIONS/fft2.cc +++ b/src/DLD-FUNCTIONS/fft2.cc @@ -35,9 +35,15 @@ // This function should be merged with Fifft2. DEFUN_DLD (fft2, args, , - "fft2 (X [, N] [, M])\n\ + "-*- texinfo -*-\n\ +@deftypefn {Loadable Function} {} fft2 (@var{a}, @var{n}, @var{m})\n\ +Compute the two dimensional FFT of @var{a}.\n\ \n\ -two dimensional fast fourier transform of a vector") +The optional arguments @var{n} and @var{m} may be used specify the\n\ +number of rows and columns of @var{a} to use. If either of these is\n\ +larger than the size of @var{a}, @var{a} is resized and padded with\n\ +zeros.\n\ +@end deftypefn") { octave_value_list retval;
--- a/src/DLD-FUNCTIONS/filter.cc +++ b/src/DLD-FUNCTIONS/filter.cc @@ -152,22 +152,98 @@ } DEFUN_DLD (filter, args, nargout, - "usage: [y [, sf]] = filter (b, a, x [, si])\n\ + "-*- texinfo -*-\n\ +@deftypefn {Loadable Function} {y =} filter (@var{b}, @var{a}, @var{x})\n\ +@deftypefnx {Loadable Function} {[@var{y}, @var{sf}] =} filter (@var{b}, @var{a}, @var{x}, @var{si})\n\ +Return the solution to the following linear, time-invariant difference\n\ +equation:\n\ +@iftex\n\ +@tex\n\ +$$\n\ +\\sum_{k=0}^N a_{k+1} y_{n-k} = \\sum_{k=0}^M b_{k+1} x_{n-k}, \\qquad\n\ + 1 \\le n \\le P\n\ +$$\n\ +@end tex\n\ +@end iftex\n\ +@ifinfo\n\ \n\ -y = filter (b, a, x) returns the solution to the following linear,\n\ -time-invariant difference equation:\n\ +@smallexample\n\ + N M\n\ + SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k) for 1<=n<=length(x)\n\ + k=0 k=0\n\ +@end smallexample\n\ +@end ifinfo\n\ \n\ - a[1] y[n] + ... + a[la] y[n-la+1] = b[1] x[n] + ... + b[lb] x[n-lb+1],\n\ -where la = length (a) and lb = length (b).\n\ +@noindent\n\ +where\n\ +@ifinfo\n\ + N=length(a)-1 and M=length(b)-1.\n\ +@end ifinfo\n\ +@iftex\n\ +@tex\n\ + $a \\in \\Re^{N-1}$, $b \\in \\Re^{M-1}$, and $x \\in \\Re^P$.\n\ +@end tex\n\ +@end iftex\n\ +An equivalent form of this equation is:\n\ +@iftex\n\ +@tex\n\ +$$\n\ +y_n = -\\sum_{k=1}^N c_{k+1} y_{n-k} + \\sum_{k=0}^M d_{k+1} x_{n-k}, \\qquad\n\ + 1 \\le n \\le P\n\ +$$\n\ +@end tex\n\ +@end iftex\n\ +@ifinfo\n\ \n\ -[y, sf] = filter (b, a, x, si) sets the initial state of the system, si,\n\ -and returns the final state, sf. The state vector is a column vector\n\ -whose length is equal to the length of the longest coefficient vector\n\ -minus one. If si is not set, the initial state vector is set to all\n\ +@smallexample\n\ + N M\n\ + y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k) for 1<=n<=length(x)\n\ + k=1 k=0\n\ +@end smallexample\n\ +@end ifinfo\n\ +\n\ +@noindent\n\ +where\n\ +@ifinfo\n\ + c = a/a(1) and d = b/a(1).\n\ +@end ifinfo\n\ +@iftex\n\ +@tex\n\ +$c = a/a_1$ and $d = b/a_1$.\n\ +@end tex\n\ +@end iftex\n\ +\n\ +If the fourth argument @var{si} is provided, it is taken as the\n\ +initial state of the system and the final state is returned as\n\ +@var{sf}. The state vector is a column vector whose length is\n\ +equal to the length of the longest coefficient vector minus one.\n\ +If @var{si} is not supplied, the initial state vector is set to all\n\ zeros.\n\ \n\ -The particular algorithm employed is known as a transposed Direct Form II\n\ -implementation.") +In terms of the z-transform, y is the result of passing the discrete-\n\ +time signal x through a system characterized by the following rational\n\ +system function:\n\ +@iftex\n\ +@tex\n\ +$$\n\ +H(z) = {\\displaystyle\\sum_{k=0}^M d_{k+1} z^{-k}\n\ + \\over 1 + \\displaystyle\\sum_{k+1}^N c_{k+1} z^{-k}}\n\ +$$\n\ +@end tex\n\ +@end iftex\n\ +@ifinfo\n\ +\n\ +@example\n\ + M\n\ + SUM d(k+1) z^(-k)\n\ + k=0\n\ + H(z) = ----------------------\n\ + N\n\ + 1 + SUM c(k+1) z(-k)\n\ + k=1\n\ +@end example\n\ +@end ifinfo\n\ +@end deftypefn") { octave_value_list retval;
--- a/src/DLD-FUNCTIONS/ifft.cc +++ b/src/DLD-FUNCTIONS/ifft.cc @@ -35,7 +35,18 @@ // This function should be merged with Ffft. DEFUN_DLD (ifft, args, , - "ifft (X [, N]): inverse fast fourier transform of a vector") + "-*- texinfo -*-\n\ +@deftypefn {Loadable Function} {} ifft (@var{a}, @var{n})\n\ +Compute the inverse FFT of @var{a} using subroutines from @sc{Fftpack}. If\n\ +@var{a} is a matrix, @code{fft} computes the inverse FFT for each column\n\ +of @var{a}.\n\ +\n\ +If called with two arguments, @var{n} is expected to be an integer\n\ +specifying the number of elements of @var{a} to use. If @var{a} is a\n\ +matrix, @var{n} specifies the number of rows of @var{a} to use. If\n\ +@var{n} is larger than the size of @var{a}, @var{a} is resized and\n\ +padded with zeros.\n\ +@end deftypefn") { octave_value_list retval;
--- a/src/DLD-FUNCTIONS/ifft2.cc +++ b/src/DLD-FUNCTIONS/ifft2.cc @@ -35,9 +35,15 @@ // This function should be merged with Ffft2. DEFUN_DLD (ifft2, args, , - "ifft2 (X [, N] [, M])\n\ + "-*- texinfo -*-\n\ +@deftypefn {Loadable Function} {} ifft2 (@var{a}, @var{n}, @var{m})\n\ +Compute the two dimensional inverse FFT of @var{a}.\n\ \n\ -two dimensional inverse fast fourier transform of a vector") +The optional arguments @var{n} and @var{m} may be used specify the\n\ +number of rows and columns of @var{a} to use. If either of these is\n\ +larger than the size of @var{a}, @var{a} is resized and padded with\n\ +zeros.\n\ +@end deftypefn") { octave_value_list retval;