1993
|
1 // Template array classes |
237
|
2 /* |
|
3 |
7017
|
4 Copyright (C) 1993, 1994, 1995, 1996, 1997, 2000, 2002, 2003, 2004, |
|
5 2005, 2006, 2007 John W. Eaton |
237
|
6 |
|
7 This file is part of Octave. |
|
8 |
|
9 Octave is free software; you can redistribute it and/or modify it |
|
10 under the terms of the GNU General Public License as published by the |
7016
|
11 Free Software Foundation; either version 3 of the License, or (at your |
|
12 option) any later version. |
237
|
13 |
|
14 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
17 for more details. |
|
18 |
|
19 You should have received a copy of the GNU General Public License |
7016
|
20 along with Octave; see the file COPYING. If not, see |
|
21 <http://www.gnu.org/licenses/>. |
237
|
22 |
|
23 */ |
|
24 |
|
25 #ifdef HAVE_CONFIG_H |
1192
|
26 #include <config.h> |
237
|
27 #endif |
|
28 |
1367
|
29 #include <cassert> |
4518
|
30 #include <climits> |
449
|
31 |
3503
|
32 #include <iostream> |
5765
|
33 #include <sstream> |
5607
|
34 #include <vector> |
6674
|
35 #include <new> |
1560
|
36 |
237
|
37 #include "Array.h" |
4588
|
38 #include "Array-util.h" |
4517
|
39 #include "Range.h" |
1560
|
40 #include "idx-vector.h" |
|
41 #include "lo-error.h" |
|
42 |
1360
|
43 // One dimensional array class. Handles the reference counting for |
|
44 // all the derived classes. |
237
|
45 |
|
46 template <class T> |
4834
|
47 Array<T>::Array (const Array<T>& a, const dim_vector& dv) |
|
48 : rep (a.rep), dimensions (dv), idx (0), idx_count (0) |
|
49 { |
|
50 rep->count++; |
|
51 |
|
52 if (a.numel () < dv.numel ()) |
|
53 (*current_liboctave_error_handler) |
|
54 ("Array::Array (const Array&, const dim_vector&): dimension mismatch"); |
|
55 } |
|
56 |
|
57 template <class T> |
1619
|
58 Array<T>::~Array (void) |
|
59 { |
|
60 if (--rep->count <= 0) |
|
61 delete rep; |
|
62 |
|
63 delete [] idx; |
4513
|
64 } |
|
65 |
4532
|
66 template <class T> |
|
67 Array<T> |
|
68 Array<T>::squeeze (void) const |
|
69 { |
|
70 Array<T> retval = *this; |
|
71 |
4929
|
72 if (ndims () > 2) |
4532
|
73 { |
4929
|
74 bool dims_changed = false; |
|
75 |
|
76 dim_vector new_dimensions = dimensions; |
|
77 |
|
78 int k = 0; |
|
79 |
|
80 for (int i = 0; i < ndims (); i++) |
4759
|
81 { |
4929
|
82 if (dimensions(i) == 1) |
|
83 dims_changed = true; |
|
84 else |
|
85 new_dimensions(k++) = dimensions(i); |
|
86 } |
|
87 |
|
88 if (dims_changed) |
|
89 { |
|
90 switch (k) |
|
91 { |
|
92 case 0: |
|
93 new_dimensions = dim_vector (1, 1); |
|
94 break; |
|
95 |
|
96 case 1: |
4759
|
97 { |
5275
|
98 octave_idx_type tmp = new_dimensions(0); |
4929
|
99 |
|
100 new_dimensions.resize (2); |
|
101 |
4759
|
102 new_dimensions(0) = tmp; |
|
103 new_dimensions(1) = 1; |
|
104 } |
4929
|
105 break; |
|
106 |
|
107 default: |
|
108 new_dimensions.resize (k); |
|
109 break; |
|
110 } |
4759
|
111 } |
4532
|
112 |
5775
|
113 // FIXME -- it would be better if we did not have to do |
5047
|
114 // this, so we could share the data while still having different |
|
115 // dimension vectors. |
|
116 |
4532
|
117 retval.make_unique (); |
|
118 |
|
119 retval.dimensions = new_dimensions; |
|
120 } |
|
121 |
|
122 return retval; |
|
123 } |
|
124 |
6674
|
125 // KLUGE |
|
126 |
|
127 // The following get_size functions will throw a std::bad_alloc () |
|
128 // exception if the requested size is larger than can be indexed by |
|
129 // octave_idx_type. This may be smaller than the actual amount of |
|
130 // memory that can be safely allocated on a system. However, if we |
|
131 // don't fail here, we can end up with a mysterious crash inside a |
|
132 // function that is iterating over an array using octave_idx_type |
|
133 // indices. |
|
134 |
4513
|
135 // A guess (should be quite conservative). |
|
136 #define MALLOC_OVERHEAD 1024 |
|
137 |
|
138 template <class T> |
5275
|
139 octave_idx_type |
|
140 Array<T>::get_size (octave_idx_type r, octave_idx_type c) |
4513
|
141 { |
|
142 static int nl; |
|
143 static double dl |
5275
|
144 = frexp (static_cast<double> |
|
145 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513
|
146 |
|
147 int nr, nc; |
5275
|
148 double dr = frexp (static_cast<double> (r), &nr); // r = dr * 2^nr |
|
149 double dc = frexp (static_cast<double> (c), &nc); // c = dc * 2^nc |
4513
|
150 |
|
151 int nt = nr + nc; |
|
152 double dt = dr * dc; |
|
153 |
4532
|
154 if (dt < 0.5) |
4513
|
155 { |
|
156 nt--; |
|
157 dt *= 2; |
|
158 } |
|
159 |
6674
|
160 if (nt < nl || (nt == nl && dt < dl)) |
|
161 return r * c; |
|
162 else |
|
163 { |
|
164 throw std::bad_alloc (); |
|
165 return 0; |
|
166 } |
237
|
167 } |
|
168 |
|
169 template <class T> |
5275
|
170 octave_idx_type |
|
171 Array<T>::get_size (octave_idx_type r, octave_idx_type c, octave_idx_type p) |
237
|
172 { |
4513
|
173 static int nl; |
|
174 static double dl |
|
175 = frexp (static_cast<double> |
5275
|
176 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513
|
177 |
|
178 int nr, nc, np; |
|
179 double dr = frexp (static_cast<double> (r), &nr); |
|
180 double dc = frexp (static_cast<double> (c), &nc); |
|
181 double dp = frexp (static_cast<double> (p), &np); |
|
182 |
|
183 int nt = nr + nc + np; |
|
184 double dt = dr * dc * dp; |
|
185 |
4532
|
186 if (dt < 0.5) |
659
|
187 { |
4513
|
188 nt--; |
|
189 dt *= 2; |
237
|
190 |
4532
|
191 if (dt < 0.5) |
|
192 { |
|
193 nt--; |
|
194 dt *= 2; |
|
195 } |
659
|
196 } |
1619
|
197 |
6674
|
198 if (nt < nl || (nt == nl && dt < dl)) |
|
199 return r * c * p; |
|
200 else |
|
201 { |
|
202 throw std::bad_alloc (); |
|
203 return 0; |
|
204 } |
237
|
205 } |
|
206 |
|
207 template <class T> |
5275
|
208 octave_idx_type |
4513
|
209 Array<T>::get_size (const dim_vector& ra_idx) |
237
|
210 { |
4513
|
211 static int nl; |
|
212 static double dl |
|
213 = frexp (static_cast<double> |
5275
|
214 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513
|
215 |
|
216 int n = ra_idx.length (); |
|
217 |
|
218 int nt = 0; |
|
219 double dt = 1; |
|
220 |
|
221 for (int i = 0; i < n; i++) |
237
|
222 { |
4513
|
223 int nra_idx; |
|
224 double dra_idx = frexp (static_cast<double> (ra_idx(i)), &nra_idx); |
|
225 |
|
226 nt += nra_idx; |
|
227 dt *= dra_idx; |
4532
|
228 |
|
229 if (dt < 0.5) |
|
230 { |
|
231 nt--; |
|
232 dt *= 2; |
|
233 } |
237
|
234 } |
|
235 |
4513
|
236 if (nt < nl || (nt == nl && dt < dl)) |
|
237 { |
6674
|
238 octave_idx_type retval = 1; |
4513
|
239 |
|
240 for (int i = 0; i < n; i++) |
|
241 retval *= ra_idx(i); |
6674
|
242 |
|
243 return retval; |
4513
|
244 } |
6674
|
245 else |
|
246 { |
|
247 throw std::bad_alloc (); |
|
248 return 0; |
|
249 } |
237
|
250 } |
|
251 |
4513
|
252 #undef MALLOC_OVERHEAD |
|
253 |
237
|
254 template <class T> |
5275
|
255 octave_idx_type |
|
256 Array<T>::compute_index (const Array<octave_idx_type>& ra_idx) const |
237
|
257 { |
5275
|
258 octave_idx_type retval = -1; |
4513
|
259 |
|
260 int n = dimensions.length (); |
|
261 |
|
262 if (n > 0 && n == ra_idx.length ()) |
237
|
263 { |
4513
|
264 retval = ra_idx(--n); |
237
|
265 |
4513
|
266 while (--n >= 0) |
|
267 { |
|
268 retval *= dimensions(n); |
|
269 retval += ra_idx(n); |
|
270 } |
|
271 } |
|
272 else |
|
273 (*current_liboctave_error_handler) |
|
274 ("Array<T>::compute_index: invalid ra_idxing operation"); |
237
|
275 |
4513
|
276 return retval; |
237
|
277 } |
|
278 |
2049
|
279 template <class T> |
|
280 T |
5275
|
281 Array<T>::range_error (const char *fcn, octave_idx_type n) const |
2049
|
282 { |
2109
|
283 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
2049
|
284 return T (); |
|
285 } |
|
286 |
|
287 template <class T> |
|
288 T& |
5275
|
289 Array<T>::range_error (const char *fcn, octave_idx_type n) |
2049
|
290 { |
2109
|
291 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
2049
|
292 static T foo; |
|
293 return foo; |
|
294 } |
|
295 |
3933
|
296 template <class T> |
4513
|
297 T |
5275
|
298 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const |
4513
|
299 { |
|
300 (*current_liboctave_error_handler) |
|
301 ("%s (%d, %d): range error", fcn, i, j); |
|
302 return T (); |
|
303 } |
|
304 |
|
305 template <class T> |
|
306 T& |
5275
|
307 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) |
4513
|
308 { |
|
309 (*current_liboctave_error_handler) |
|
310 ("%s (%d, %d): range error", fcn, i, j); |
|
311 static T foo; |
|
312 return foo; |
|
313 } |
|
314 |
|
315 template <class T> |
|
316 T |
5275
|
317 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k) const |
4513
|
318 { |
|
319 (*current_liboctave_error_handler) |
|
320 ("%s (%d, %d, %d): range error", fcn, i, j, k); |
|
321 return T (); |
|
322 } |
|
323 |
|
324 template <class T> |
|
325 T& |
5275
|
326 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k) |
4513
|
327 { |
|
328 (*current_liboctave_error_handler) |
|
329 ("%s (%d, %d, %d): range error", fcn, i, j, k); |
|
330 static T foo; |
|
331 return foo; |
|
332 } |
|
333 |
|
334 template <class T> |
|
335 T |
6867
|
336 Array<T>::range_error (const char *fcn, const Array<octave_idx_type>& ra_idx) const |
4513
|
337 { |
5765
|
338 std::ostringstream buf; |
4661
|
339 |
|
340 buf << fcn << " ("; |
|
341 |
5275
|
342 octave_idx_type n = ra_idx.length (); |
4661
|
343 |
|
344 if (n > 0) |
|
345 buf << ra_idx(0); |
|
346 |
5275
|
347 for (octave_idx_type i = 1; i < n; i++) |
4661
|
348 buf << ", " << ra_idx(i); |
|
349 |
|
350 buf << "): range error"; |
|
351 |
5765
|
352 std::string buf_str = buf.str (); |
|
353 |
|
354 (*current_liboctave_error_handler) (buf_str.c_str ()); |
4513
|
355 |
|
356 return T (); |
|
357 } |
|
358 |
|
359 template <class T> |
|
360 T& |
6867
|
361 Array<T>::range_error (const char *fcn, const Array<octave_idx_type>& ra_idx) |
4513
|
362 { |
5765
|
363 std::ostringstream buf; |
4661
|
364 |
|
365 buf << fcn << " ("; |
|
366 |
5275
|
367 octave_idx_type n = ra_idx.length (); |
4661
|
368 |
|
369 if (n > 0) |
|
370 buf << ra_idx(0); |
|
371 |
5275
|
372 for (octave_idx_type i = 1; i < n; i++) |
4661
|
373 buf << ", " << ra_idx(i); |
|
374 |
|
375 buf << "): range error"; |
|
376 |
5765
|
377 std::string buf_str = buf.str (); |
|
378 |
|
379 (*current_liboctave_error_handler) (buf_str.c_str ()); |
4513
|
380 |
|
381 static T foo; |
|
382 return foo; |
|
383 } |
|
384 |
|
385 template <class T> |
4567
|
386 Array<T> |
|
387 Array<T>::reshape (const dim_vector& new_dims) const |
|
388 { |
|
389 Array<T> retval; |
|
390 |
|
391 if (dimensions != new_dims) |
|
392 { |
|
393 if (dimensions.numel () == new_dims.numel ()) |
|
394 retval = Array<T> (*this, new_dims); |
|
395 else |
|
396 (*current_liboctave_error_handler) ("reshape: size mismatch"); |
|
397 } |
4916
|
398 else |
|
399 retval = *this; |
4567
|
400 |
|
401 return retval; |
|
402 } |
|
403 |
7241
|
404 |
5607
|
405 |
4567
|
406 template <class T> |
4593
|
407 Array<T> |
5607
|
408 Array<T>::permute (const Array<octave_idx_type>& perm_vec_arg, bool inv) const |
4593
|
409 { |
|
410 Array<T> retval; |
|
411 |
5607
|
412 Array<octave_idx_type> perm_vec = perm_vec_arg; |
|
413 |
4593
|
414 dim_vector dv = dims (); |
|
415 dim_vector dv_new; |
|
416 |
5148
|
417 int perm_vec_len = perm_vec.length (); |
|
418 |
|
419 if (perm_vec_len < dv.length ()) |
|
420 (*current_liboctave_error_handler) |
|
421 ("%s: invalid permutation vector", inv ? "ipermute" : "permute"); |
|
422 |
|
423 dv_new.resize (perm_vec_len); |
|
424 |
|
425 // Append singleton dimensions as needed. |
|
426 dv.resize (perm_vec_len, 1); |
|
427 |
4593
|
428 // Need this array to check for identical elements in permutation array. |
5148
|
429 Array<bool> checked (perm_vec_len, false); |
4593
|
430 |
|
431 // Find dimension vector of permuted array. |
5148
|
432 for (int i = 0; i < perm_vec_len; i++) |
4593
|
433 { |
5275
|
434 octave_idx_type perm_elt = perm_vec.elem (i); |
5148
|
435 |
|
436 if (perm_elt >= perm_vec_len || perm_elt < 0) |
4593
|
437 { |
|
438 (*current_liboctave_error_handler) |
5148
|
439 ("%s: permutation vector contains an invalid element", |
|
440 inv ? "ipermute" : "permute"); |
4593
|
441 |
|
442 return retval; |
|
443 } |
|
444 |
5148
|
445 if (checked.elem(perm_elt)) |
4593
|
446 { |
|
447 (*current_liboctave_error_handler) |
5148
|
448 ("%s: permutation vector cannot contain identical elements", |
|
449 inv ? "ipermute" : "permute"); |
4593
|
450 |
|
451 return retval; |
|
452 } |
|
453 else |
5148
|
454 checked.elem(perm_elt) = true; |
|
455 |
|
456 dv_new(i) = dv(perm_elt); |
4593
|
457 } |
|
458 |
5607
|
459 int nd = dv.length (); |
|
460 |
5775
|
461 // FIXME -- it would be nice to have a sort method in the |
5607
|
462 // Array class that also returns the sort indices. |
|
463 |
|
464 if (inv) |
|
465 { |
|
466 OCTAVE_LOCAL_BUFFER (permute_vector, pvec, nd); |
|
467 |
|
468 for (int i = 0; i < nd; i++) |
|
469 { |
|
470 pvec[i].pidx = perm_vec(i); |
|
471 pvec[i].iidx = i; |
|
472 } |
|
473 |
|
474 octave_qsort (pvec, static_cast<size_t> (nd), |
|
475 sizeof (permute_vector), permute_vector_compare); |
|
476 |
|
477 for (int i = 0; i < nd; i++) |
|
478 { |
|
479 perm_vec(i) = pvec[i].iidx; |
|
480 dv_new(i) = dv(perm_vec(i)); |
|
481 } |
|
482 } |
|
483 |
4593
|
484 retval.resize (dv_new); |
|
485 |
5940
|
486 if (numel () > 0) |
5607
|
487 { |
5940
|
488 Array<octave_idx_type> cp (nd+1, 1); |
|
489 for (octave_idx_type i = 1; i < nd+1; i++) |
|
490 cp(i) = cp(i-1) * dv(i-1); |
|
491 |
|
492 octave_idx_type incr = cp(perm_vec(0)); |
|
493 |
|
494 Array<octave_idx_type> base_delta (nd-1, 0); |
|
495 Array<octave_idx_type> base_delta_max (nd-1); |
|
496 Array<octave_idx_type> base_incr (nd-1); |
|
497 for (octave_idx_type i = 0; i < nd-1; i++) |
5607
|
498 { |
5940
|
499 base_delta_max(i) = dv_new(i+1); |
|
500 base_incr(i) = cp(perm_vec(i+1)); |
5607
|
501 } |
|
502 |
5940
|
503 octave_idx_type nr_new = dv_new(0); |
|
504 octave_idx_type nel_new = dv_new.numel (); |
|
505 octave_idx_type n = nel_new / nr_new; |
|
506 |
|
507 octave_idx_type k = 0; |
|
508 |
|
509 for (octave_idx_type i = 0; i < n; i++) |
5607
|
510 { |
5940
|
511 octave_idx_type iidx = 0; |
|
512 for (octave_idx_type kk = 0; kk < nd-1; kk++) |
|
513 iidx += base_delta(kk) * base_incr(kk); |
|
514 |
|
515 for (octave_idx_type j = 0; j < nr_new; j++) |
5607
|
516 { |
5940
|
517 OCTAVE_QUIT; |
|
518 |
|
519 retval(k++) = elem(iidx); |
|
520 iidx += incr; |
|
521 } |
|
522 |
|
523 base_delta(0)++; |
|
524 |
|
525 for (octave_idx_type kk = 0; kk < nd-2; kk++) |
|
526 { |
|
527 if (base_delta(kk) == base_delta_max(kk)) |
|
528 { |
|
529 base_delta(kk) = 0; |
|
530 base_delta(kk+1)++; |
|
531 } |
5607
|
532 } |
|
533 } |
4593
|
534 } |
|
535 |
5340
|
536 retval.chop_trailing_singletons (); |
5338
|
537 |
4593
|
538 return retval; |
|
539 } |
|
540 |
|
541 template <class T> |
4513
|
542 void |
5275
|
543 Array<T>::resize_no_fill (octave_idx_type n) |
4513
|
544 { |
|
545 if (n < 0) |
|
546 { |
|
547 (*current_liboctave_error_handler) |
|
548 ("can't resize to negative dimension"); |
|
549 return; |
|
550 } |
|
551 |
|
552 if (n == length ()) |
|
553 return; |
|
554 |
|
555 typename Array<T>::ArrayRep *old_rep = rep; |
|
556 const T *old_data = data (); |
5275
|
557 octave_idx_type old_len = length (); |
4513
|
558 |
|
559 rep = new typename Array<T>::ArrayRep (n); |
|
560 |
|
561 dimensions = dim_vector (n); |
|
562 |
4747
|
563 if (n > 0 && old_data && old_len > 0) |
4513
|
564 { |
5275
|
565 octave_idx_type min_len = old_len < n ? old_len : n; |
|
566 |
|
567 for (octave_idx_type i = 0; i < min_len; i++) |
4513
|
568 xelem (i) = old_data[i]; |
|
569 } |
|
570 |
|
571 if (--old_rep->count <= 0) |
|
572 delete old_rep; |
|
573 } |
|
574 |
|
575 template <class T> |
|
576 void |
4587
|
577 Array<T>::resize_no_fill (const dim_vector& dv) |
4513
|
578 { |
5275
|
579 octave_idx_type n = dv.length (); |
|
580 |
|
581 for (octave_idx_type i = 0; i < n; i++) |
4513
|
582 { |
4587
|
583 if (dv(i) < 0) |
4513
|
584 { |
|
585 (*current_liboctave_error_handler) |
|
586 ("can't resize to negative dimension"); |
|
587 return; |
|
588 } |
|
589 } |
|
590 |
4548
|
591 bool same_size = true; |
|
592 |
|
593 if (dimensions.length () != n) |
|
594 { |
|
595 same_size = false; |
|
596 } |
|
597 else |
4513
|
598 { |
5275
|
599 for (octave_idx_type i = 0; i < n; i++) |
4513
|
600 { |
4587
|
601 if (dv(i) != dimensions(i)) |
4548
|
602 { |
|
603 same_size = false; |
|
604 break; |
|
605 } |
4513
|
606 } |
|
607 } |
|
608 |
4548
|
609 if (same_size) |
4513
|
610 return; |
|
611 |
|
612 typename Array<T>::ArrayRep *old_rep = rep; |
|
613 const T *old_data = data (); |
|
614 |
5275
|
615 octave_idx_type ts = get_size (dv); |
4747
|
616 |
|
617 rep = new typename Array<T>::ArrayRep (ts); |
4587
|
618 |
4870
|
619 dim_vector dv_old = dimensions; |
5275
|
620 octave_idx_type dv_old_orig_len = dv_old.length (); |
4587
|
621 dimensions = dv; |
5275
|
622 octave_idx_type ts_old = get_size (dv_old); |
4915
|
623 |
|
624 if (ts > 0 && ts_old > 0 && dv_old_orig_len > 0) |
4513
|
625 { |
5275
|
626 Array<octave_idx_type> ra_idx (dimensions.length (), 0); |
4747
|
627 |
4870
|
628 if (n > dv_old_orig_len) |
4747
|
629 { |
4870
|
630 dv_old.resize (n); |
|
631 |
5275
|
632 for (octave_idx_type i = dv_old_orig_len; i < n; i++) |
4870
|
633 dv_old.elem (i) = 1; |
|
634 } |
|
635 |
5275
|
636 for (octave_idx_type i = 0; i < ts; i++) |
4870
|
637 { |
|
638 if (index_in_bounds (ra_idx, dv_old)) |
|
639 rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)]; |
4747
|
640 |
|
641 increment_index (ra_idx, dimensions); |
|
642 } |
4513
|
643 } |
|
644 |
|
645 if (--old_rep->count <= 0) |
|
646 delete old_rep; |
|
647 } |
|
648 |
|
649 template <class T> |
|
650 void |
5275
|
651 Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c) |
4513
|
652 { |
|
653 if (r < 0 || c < 0) |
|
654 { |
|
655 (*current_liboctave_error_handler) |
|
656 ("can't resize to negative dimension"); |
|
657 return; |
|
658 } |
|
659 |
4548
|
660 int n = ndims (); |
|
661 |
|
662 if (n == 0) |
|
663 dimensions = dim_vector (0, 0); |
|
664 |
|
665 assert (ndims () == 2); |
|
666 |
4513
|
667 if (r == dim1 () && c == dim2 ()) |
|
668 return; |
|
669 |
|
670 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; |
|
671 const T *old_data = data (); |
|
672 |
5275
|
673 octave_idx_type old_d1 = dim1 (); |
|
674 octave_idx_type old_d2 = dim2 (); |
|
675 octave_idx_type old_len = length (); |
|
676 |
|
677 octave_idx_type ts = get_size (r, c); |
4747
|
678 |
|
679 rep = new typename Array<T>::ArrayRep (ts); |
4513
|
680 |
|
681 dimensions = dim_vector (r, c); |
|
682 |
4747
|
683 if (ts > 0 && old_data && old_len > 0) |
4513
|
684 { |
5275
|
685 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
686 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
|
687 |
|
688 for (octave_idx_type j = 0; j < min_c; j++) |
|
689 for (octave_idx_type i = 0; i < min_r; i++) |
4513
|
690 xelem (i, j) = old_data[old_d1*j+i]; |
|
691 } |
|
692 |
|
693 if (--old_rep->count <= 0) |
|
694 delete old_rep; |
|
695 } |
|
696 |
|
697 template <class T> |
|
698 void |
5275
|
699 Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p) |
4513
|
700 { |
|
701 if (r < 0 || c < 0 || p < 0) |
|
702 { |
|
703 (*current_liboctave_error_handler) |
|
704 ("can't resize to negative dimension"); |
|
705 return; |
|
706 } |
|
707 |
4548
|
708 int n = ndims (); |
|
709 |
|
710 if (n == 0) |
|
711 dimensions = dim_vector (0, 0, 0); |
|
712 |
|
713 assert (ndims () == 3); |
|
714 |
4513
|
715 if (r == dim1 () && c == dim2 () && p == dim3 ()) |
|
716 return; |
|
717 |
|
718 typename Array<T>::ArrayRep *old_rep = rep; |
|
719 const T *old_data = data (); |
|
720 |
5275
|
721 octave_idx_type old_d1 = dim1 (); |
|
722 octave_idx_type old_d2 = dim2 (); |
|
723 octave_idx_type old_d3 = dim3 (); |
|
724 octave_idx_type old_len = length (); |
|
725 |
|
726 octave_idx_type ts = get_size (get_size (r, c), p); |
4513
|
727 |
|
728 rep = new typename Array<T>::ArrayRep (ts); |
|
729 |
|
730 dimensions = dim_vector (r, c, p); |
|
731 |
4747
|
732 if (ts > 0 && old_data && old_len > 0) |
4513
|
733 { |
5275
|
734 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
735 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
|
736 octave_idx_type min_p = old_d3 < p ? old_d3 : p; |
|
737 |
|
738 for (octave_idx_type k = 0; k < min_p; k++) |
|
739 for (octave_idx_type j = 0; j < min_c; j++) |
|
740 for (octave_idx_type i = 0; i < min_r; i++) |
4513
|
741 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; |
|
742 } |
|
743 |
|
744 if (--old_rep->count <= 0) |
|
745 delete old_rep; |
|
746 } |
|
747 |
|
748 template <class T> |
|
749 void |
5275
|
750 Array<T>::resize_and_fill (octave_idx_type n, const T& val) |
4513
|
751 { |
|
752 if (n < 0) |
|
753 { |
|
754 (*current_liboctave_error_handler) |
|
755 ("can't resize to negative dimension"); |
|
756 return; |
|
757 } |
|
758 |
|
759 if (n == length ()) |
|
760 return; |
|
761 |
|
762 typename Array<T>::ArrayRep *old_rep = rep; |
|
763 const T *old_data = data (); |
5275
|
764 octave_idx_type old_len = length (); |
4513
|
765 |
|
766 rep = new typename Array<T>::ArrayRep (n); |
|
767 |
|
768 dimensions = dim_vector (n); |
|
769 |
4747
|
770 if (n > 0) |
4513
|
771 { |
5275
|
772 octave_idx_type min_len = old_len < n ? old_len : n; |
4747
|
773 |
|
774 if (old_data && old_len > 0) |
|
775 { |
5275
|
776 for (octave_idx_type i = 0; i < min_len; i++) |
4747
|
777 xelem (i) = old_data[i]; |
|
778 } |
|
779 |
5275
|
780 for (octave_idx_type i = old_len; i < n; i++) |
4747
|
781 xelem (i) = val; |
4513
|
782 } |
|
783 |
|
784 if (--old_rep->count <= 0) |
|
785 delete old_rep; |
|
786 } |
|
787 |
|
788 template <class T> |
|
789 void |
5275
|
790 Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, const T& val) |
4513
|
791 { |
|
792 if (r < 0 || c < 0) |
|
793 { |
|
794 (*current_liboctave_error_handler) |
|
795 ("can't resize to negative dimension"); |
|
796 return; |
|
797 } |
|
798 |
4548
|
799 if (ndims () == 0) |
|
800 dimensions = dim_vector (0, 0); |
|
801 |
|
802 assert (ndims () == 2); |
|
803 |
4513
|
804 if (r == dim1 () && c == dim2 ()) |
|
805 return; |
|
806 |
|
807 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; |
|
808 const T *old_data = data (); |
|
809 |
5275
|
810 octave_idx_type old_d1 = dim1 (); |
|
811 octave_idx_type old_d2 = dim2 (); |
|
812 octave_idx_type old_len = length (); |
|
813 |
|
814 octave_idx_type ts = get_size (r, c); |
4747
|
815 |
|
816 rep = new typename Array<T>::ArrayRep (ts); |
4513
|
817 |
|
818 dimensions = dim_vector (r, c); |
|
819 |
4747
|
820 if (ts > 0) |
4513
|
821 { |
5275
|
822 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
823 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
4747
|
824 |
|
825 if (old_data && old_len > 0) |
|
826 { |
5275
|
827 for (octave_idx_type j = 0; j < min_c; j++) |
|
828 for (octave_idx_type i = 0; i < min_r; i++) |
4747
|
829 xelem (i, j) = old_data[old_d1*j+i]; |
|
830 } |
|
831 |
5275
|
832 for (octave_idx_type j = 0; j < min_c; j++) |
|
833 for (octave_idx_type i = min_r; i < r; i++) |
4747
|
834 xelem (i, j) = val; |
|
835 |
5275
|
836 for (octave_idx_type j = min_c; j < c; j++) |
|
837 for (octave_idx_type i = 0; i < r; i++) |
4747
|
838 xelem (i, j) = val; |
4513
|
839 } |
|
840 |
|
841 if (--old_rep->count <= 0) |
|
842 delete old_rep; |
|
843 } |
|
844 |
|
845 template <class T> |
|
846 void |
5275
|
847 Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p, const T& val) |
4513
|
848 { |
|
849 if (r < 0 || c < 0 || p < 0) |
|
850 { |
|
851 (*current_liboctave_error_handler) |
|
852 ("can't resize to negative dimension"); |
|
853 return; |
|
854 } |
|
855 |
4548
|
856 if (ndims () == 0) |
|
857 dimensions = dim_vector (0, 0, 0); |
|
858 |
|
859 assert (ndims () == 3); |
|
860 |
4513
|
861 if (r == dim1 () && c == dim2 () && p == dim3 ()) |
|
862 return; |
|
863 |
|
864 typename Array<T>::ArrayRep *old_rep = rep; |
|
865 const T *old_data = data (); |
|
866 |
5275
|
867 octave_idx_type old_d1 = dim1 (); |
|
868 octave_idx_type old_d2 = dim2 (); |
|
869 octave_idx_type old_d3 = dim3 (); |
|
870 |
|
871 octave_idx_type old_len = length (); |
|
872 |
|
873 octave_idx_type ts = get_size (get_size (r, c), p); |
4513
|
874 |
|
875 rep = new typename Array<T>::ArrayRep (ts); |
|
876 |
|
877 dimensions = dim_vector (r, c, p); |
|
878 |
4747
|
879 if (ts > 0) |
|
880 { |
5275
|
881 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
882 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
|
883 octave_idx_type min_p = old_d3 < p ? old_d3 : p; |
4747
|
884 |
|
885 if (old_data && old_len > 0) |
5275
|
886 for (octave_idx_type k = 0; k < min_p; k++) |
|
887 for (octave_idx_type j = 0; j < min_c; j++) |
|
888 for (octave_idx_type i = 0; i < min_r; i++) |
4747
|
889 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; |
|
890 |
5775
|
891 // FIXME -- if the copy constructor is expensive, this |
4747
|
892 // may win. Otherwise, it may make more sense to just copy the |
|
893 // value everywhere when making the new ArrayRep. |
|
894 |
5275
|
895 for (octave_idx_type k = 0; k < min_p; k++) |
|
896 for (octave_idx_type j = min_c; j < c; j++) |
|
897 for (octave_idx_type i = 0; i < min_r; i++) |
4747
|
898 xelem (i, j, k) = val; |
|
899 |
5275
|
900 for (octave_idx_type k = 0; k < min_p; k++) |
|
901 for (octave_idx_type j = 0; j < c; j++) |
|
902 for (octave_idx_type i = min_r; i < r; i++) |
4747
|
903 xelem (i, j, k) = val; |
|
904 |
5275
|
905 for (octave_idx_type k = min_p; k < p; k++) |
|
906 for (octave_idx_type j = 0; j < c; j++) |
|
907 for (octave_idx_type i = 0; i < r; i++) |
4747
|
908 xelem (i, j, k) = val; |
|
909 } |
4513
|
910 |
|
911 if (--old_rep->count <= 0) |
|
912 delete old_rep; |
|
913 } |
|
914 |
|
915 template <class T> |
|
916 void |
4587
|
917 Array<T>::resize_and_fill (const dim_vector& dv, const T& val) |
4513
|
918 { |
5275
|
919 octave_idx_type n = dv.length (); |
|
920 |
|
921 for (octave_idx_type i = 0; i < n; i++) |
4513
|
922 { |
4587
|
923 if (dv(i) < 0) |
4513
|
924 { |
|
925 (*current_liboctave_error_handler) |
|
926 ("can't resize to negative dimension"); |
|
927 return; |
|
928 } |
|
929 } |
|
930 |
4553
|
931 bool same_size = true; |
|
932 |
|
933 if (dimensions.length () != n) |
|
934 { |
|
935 same_size = false; |
|
936 } |
|
937 else |
4513
|
938 { |
5275
|
939 for (octave_idx_type i = 0; i < n; i++) |
4513
|
940 { |
4587
|
941 if (dv(i) != dimensions(i)) |
4553
|
942 { |
|
943 same_size = false; |
|
944 break; |
|
945 } |
4513
|
946 } |
|
947 } |
|
948 |
4553
|
949 if (same_size) |
4513
|
950 return; |
|
951 |
|
952 typename Array<T>::ArrayRep *old_rep = rep; |
|
953 const T *old_data = data (); |
|
954 |
5275
|
955 octave_idx_type len = get_size (dv); |
4709
|
956 |
4513
|
957 rep = new typename Array<T>::ArrayRep (len); |
|
958 |
4707
|
959 dim_vector dv_old = dimensions; |
5275
|
960 octave_idx_type dv_old_orig_len = dv_old.length (); |
4587
|
961 dimensions = dv; |
4513
|
962 |
4870
|
963 if (len > 0 && dv_old_orig_len > 0) |
4513
|
964 { |
5275
|
965 Array<octave_idx_type> ra_idx (dimensions.length (), 0); |
4870
|
966 |
|
967 if (n > dv_old_orig_len) |
|
968 { |
|
969 dv_old.resize (n); |
|
970 |
5275
|
971 for (octave_idx_type i = dv_old_orig_len; i < n; i++) |
4870
|
972 dv_old.elem (i) = 1; |
|
973 } |
4747
|
974 |
5275
|
975 for (octave_idx_type i = 0; i < len; i++) |
4747
|
976 { |
|
977 if (index_in_bounds (ra_idx, dv_old)) |
4870
|
978 rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)]; |
|
979 else |
|
980 rep->elem (i) = val; |
|
981 |
|
982 increment_index (ra_idx, dimensions); |
4747
|
983 } |
4513
|
984 } |
4870
|
985 else |
5275
|
986 for (octave_idx_type i = 0; i < len; i++) |
4870
|
987 rep->elem (i) = val; |
4513
|
988 |
|
989 if (--old_rep->count <= 0) |
|
990 delete old_rep; |
|
991 } |
|
992 |
|
993 template <class T> |
|
994 Array<T>& |
5275
|
995 Array<T>::insert (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4513
|
996 { |
4786
|
997 if (ndims () == 2 && a.ndims () == 2) |
|
998 insert2 (a, r, c); |
|
999 else |
|
1000 insertN (a, r, c); |
|
1001 |
|
1002 return *this; |
|
1003 } |
|
1004 |
|
1005 |
|
1006 template <class T> |
|
1007 Array<T>& |
5275
|
1008 Array<T>::insert2 (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4786
|
1009 { |
5275
|
1010 octave_idx_type a_rows = a.rows (); |
|
1011 octave_idx_type a_cols = a.cols (); |
4786
|
1012 |
|
1013 if (r < 0 || r + a_rows > rows () || c < 0 || c + a_cols > cols ()) |
|
1014 { |
|
1015 (*current_liboctave_error_handler) ("range error for insert"); |
|
1016 return *this; |
|
1017 } |
|
1018 |
5275
|
1019 for (octave_idx_type j = 0; j < a_cols; j++) |
|
1020 for (octave_idx_type i = 0; i < a_rows; i++) |
4786
|
1021 elem (r+i, c+j) = a.elem (i, j); |
|
1022 |
|
1023 return *this; |
|
1024 } |
|
1025 |
|
1026 template <class T> |
|
1027 Array<T>& |
5275
|
1028 Array<T>::insertN (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4786
|
1029 { |
4806
|
1030 dim_vector dv = dims (); |
|
1031 |
4765
|
1032 dim_vector a_dv = a.dims (); |
|
1033 |
|
1034 int n = a_dv.length (); |
|
1035 |
|
1036 if (n == dimensions.length ()) |
4513
|
1037 { |
5275
|
1038 Array<octave_idx_type> a_ra_idx (a_dv.length (), 0); |
4765
|
1039 |
|
1040 a_ra_idx.elem (0) = r; |
|
1041 a_ra_idx.elem (1) = c; |
|
1042 |
|
1043 for (int i = 0; i < n; i++) |
|
1044 { |
4806
|
1045 if (a_ra_idx(i) < 0 || (a_ra_idx(i) + a_dv(i)) > dv(i)) |
4765
|
1046 { |
|
1047 (*current_liboctave_error_handler) |
|
1048 ("Array<T>::insert: range error for insert"); |
|
1049 return *this; |
|
1050 } |
|
1051 } |
|
1052 |
5275
|
1053 octave_idx_type n_elt = a.numel (); |
4806
|
1054 |
|
1055 const T *a_data = a.data (); |
|
1056 |
5275
|
1057 octave_idx_type iidx = 0; |
4806
|
1058 |
5275
|
1059 octave_idx_type a_rows = a_dv(0); |
|
1060 |
|
1061 octave_idx_type this_rows = dv(0); |
4806
|
1062 |
5275
|
1063 octave_idx_type numel_page = a_dv(0) * a_dv(1); |
|
1064 |
|
1065 octave_idx_type count_pages = 0; |
4806
|
1066 |
5275
|
1067 for (octave_idx_type i = 0; i < n_elt; i++) |
4765
|
1068 { |
4806
|
1069 if (i != 0 && i % a_rows == 0) |
|
1070 iidx += (this_rows - a_rows); |
|
1071 |
|
1072 if (i % numel_page == 0) |
|
1073 iidx = c * dv(0) + r + dv(0) * dv(1) * count_pages++; |
|
1074 |
|
1075 elem (iidx++) = a_data[i]; |
4765
|
1076 } |
4513
|
1077 } |
4765
|
1078 else |
|
1079 (*current_liboctave_error_handler) |
|
1080 ("Array<T>::insert: invalid indexing operation"); |
4513
|
1081 |
|
1082 return *this; |
|
1083 } |
|
1084 |
|
1085 template <class T> |
|
1086 Array<T>& |
5275
|
1087 Array<T>::insert (const Array<T>& a, const Array<octave_idx_type>& ra_idx) |
4513
|
1088 { |
5275
|
1089 octave_idx_type n = ra_idx.length (); |
4513
|
1090 |
|
1091 if (n == dimensions.length ()) |
|
1092 { |
4915
|
1093 dim_vector dva = a.dims (); |
|
1094 dim_vector dv = dims (); |
|
1095 int len_a = dva.length (); |
5120
|
1096 int non_full_dim = 0; |
4513
|
1097 |
5275
|
1098 for (octave_idx_type i = 0; i < n; i++) |
4513
|
1099 { |
4915
|
1100 if (ra_idx(i) < 0 || (ra_idx(i) + |
|
1101 (i < len_a ? dva(i) : 1)) > dimensions(i)) |
4513
|
1102 { |
|
1103 (*current_liboctave_error_handler) |
|
1104 ("Array<T>::insert: range error for insert"); |
|
1105 return *this; |
|
1106 } |
5120
|
1107 |
|
1108 if (dv(i) != (i < len_a ? dva(i) : 1)) |
|
1109 non_full_dim++; |
4513
|
1110 } |
|
1111 |
4915
|
1112 if (dva.numel ()) |
|
1113 { |
5120
|
1114 if (non_full_dim < 2) |
4915
|
1115 { |
5120
|
1116 // Special case for fast concatenation |
|
1117 const T *a_data = a.data (); |
5275
|
1118 octave_idx_type numel_to_move = 1; |
|
1119 octave_idx_type skip = 0; |
5120
|
1120 for (int i = 0; i < len_a; i++) |
|
1121 if (ra_idx(i) == 0 && dva(i) == dv(i)) |
|
1122 numel_to_move *= dva(i); |
|
1123 else |
|
1124 { |
|
1125 skip = numel_to_move * (dv(i) - dva(i)); |
|
1126 numel_to_move *= dva(i); |
|
1127 break; |
|
1128 } |
|
1129 |
5275
|
1130 octave_idx_type jidx = ra_idx(n-1); |
5120
|
1131 for (int i = n-2; i >= 0; i--) |
|
1132 { |
|
1133 jidx *= dv(i); |
|
1134 jidx += ra_idx(i); |
|
1135 } |
|
1136 |
5275
|
1137 octave_idx_type iidx = 0; |
|
1138 octave_idx_type moves = dva.numel () / numel_to_move; |
|
1139 for (octave_idx_type i = 0; i < moves; i++) |
5120
|
1140 { |
5275
|
1141 for (octave_idx_type j = 0; j < numel_to_move; j++) |
5120
|
1142 elem (jidx++) = a_data[iidx++]; |
|
1143 jidx += skip; |
|
1144 } |
4915
|
1145 } |
5120
|
1146 else |
4915
|
1147 { |
5120
|
1148 // Generic code |
|
1149 const T *a_data = a.data (); |
|
1150 int nel = a.numel (); |
5275
|
1151 Array<octave_idx_type> a_idx (n, 0); |
5120
|
1152 |
|
1153 for (int i = 0; i < nel; i++) |
|
1154 { |
|
1155 int iidx = a_idx(n-1) + ra_idx(n-1); |
|
1156 for (int j = n-2; j >= 0; j--) |
|
1157 { |
|
1158 iidx *= dv(j); |
|
1159 iidx += a_idx(j) + ra_idx(j); |
|
1160 } |
|
1161 |
|
1162 elem (iidx) = a_data[i]; |
|
1163 |
|
1164 increment_index (a_idx, dva); |
|
1165 } |
4915
|
1166 } |
|
1167 } |
4513
|
1168 } |
|
1169 else |
|
1170 (*current_liboctave_error_handler) |
|
1171 ("Array<T>::insert: invalid indexing operation"); |
|
1172 |
|
1173 return *this; |
|
1174 } |
|
1175 |
|
1176 template <class T> |
|
1177 Array<T> |
|
1178 Array<T>::transpose (void) const |
|
1179 { |
4548
|
1180 assert (ndims () == 2); |
|
1181 |
5275
|
1182 octave_idx_type nr = dim1 (); |
|
1183 octave_idx_type nc = dim2 (); |
4513
|
1184 |
|
1185 if (nr > 1 && nc > 1) |
|
1186 { |
|
1187 Array<T> result (dim_vector (nc, nr)); |
|
1188 |
5275
|
1189 for (octave_idx_type j = 0; j < nc; j++) |
|
1190 for (octave_idx_type i = 0; i < nr; i++) |
4513
|
1191 result.xelem (j, i) = xelem (i, j); |
|
1192 |
|
1193 return result; |
|
1194 } |
|
1195 else |
|
1196 { |
|
1197 // Fast transpose for vectors and empty matrices |
|
1198 return Array<T> (*this, dim_vector (nc, nr)); |
|
1199 } |
|
1200 } |
|
1201 |
|
1202 template <class T> |
|
1203 T * |
|
1204 Array<T>::fortran_vec (void) |
|
1205 { |
6881
|
1206 make_unique (); |
|
1207 |
4513
|
1208 return rep->data; |
|
1209 } |
|
1210 |
|
1211 template <class T> |
3933
|
1212 void |
4517
|
1213 Array<T>::maybe_delete_dims (void) |
|
1214 { |
4587
|
1215 int nd = dimensions.length (); |
4517
|
1216 |
|
1217 dim_vector new_dims (1, 1); |
|
1218 |
|
1219 bool delete_dims = true; |
|
1220 |
4587
|
1221 for (int i = nd - 1; i >= 0; i--) |
4517
|
1222 { |
|
1223 if (delete_dims) |
|
1224 { |
|
1225 if (dimensions(i) != 1) |
|
1226 { |
|
1227 delete_dims = false; |
|
1228 |
|
1229 new_dims = dim_vector (i + 1, dimensions(i)); |
|
1230 } |
|
1231 } |
|
1232 else |
|
1233 new_dims(i) = dimensions(i); |
|
1234 } |
4530
|
1235 |
4587
|
1236 if (nd != new_dims.length ()) |
4517
|
1237 dimensions = new_dims; |
|
1238 } |
|
1239 |
|
1240 template <class T> |
|
1241 void |
6881
|
1242 Array<T>::clear_index (void) const |
4517
|
1243 { |
|
1244 delete [] idx; |
|
1245 idx = 0; |
|
1246 idx_count = 0; |
|
1247 } |
|
1248 |
|
1249 template <class T> |
|
1250 void |
6881
|
1251 Array<T>::set_index (const idx_vector& idx_arg) const |
4517
|
1252 { |
|
1253 int nd = ndims (); |
|
1254 |
|
1255 if (! idx && nd > 0) |
|
1256 idx = new idx_vector [nd]; |
|
1257 |
|
1258 if (idx_count < nd) |
|
1259 { |
|
1260 idx[idx_count++] = idx_arg; |
|
1261 } |
|
1262 else |
|
1263 { |
|
1264 idx_vector *new_idx = new idx_vector [idx_count+1]; |
|
1265 |
|
1266 for (int i = 0; i < idx_count; i++) |
|
1267 new_idx[i] = idx[i]; |
|
1268 |
|
1269 new_idx[idx_count++] = idx_arg; |
|
1270 |
|
1271 delete [] idx; |
|
1272 |
|
1273 idx = new_idx; |
|
1274 } |
|
1275 } |
|
1276 |
|
1277 template <class T> |
|
1278 void |
|
1279 Array<T>::maybe_delete_elements (idx_vector& idx_arg) |
|
1280 { |
|
1281 switch (ndims ()) |
|
1282 { |
|
1283 case 1: |
|
1284 maybe_delete_elements_1 (idx_arg); |
|
1285 break; |
|
1286 |
|
1287 case 2: |
|
1288 maybe_delete_elements_2 (idx_arg); |
|
1289 break; |
|
1290 |
|
1291 default: |
|
1292 (*current_liboctave_error_handler) |
|
1293 ("Array<T>::maybe_delete_elements: invalid operation"); |
|
1294 break; |
|
1295 } |
|
1296 } |
|
1297 |
|
1298 template <class T> |
|
1299 void |
|
1300 Array<T>::maybe_delete_elements_1 (idx_vector& idx_arg) |
|
1301 { |
5275
|
1302 octave_idx_type len = length (); |
4517
|
1303 |
|
1304 if (len == 0) |
|
1305 return; |
|
1306 |
|
1307 if (idx_arg.is_colon_equiv (len, 1)) |
|
1308 resize_no_fill (0); |
|
1309 else |
|
1310 { |
|
1311 int num_to_delete = idx_arg.length (len); |
|
1312 |
|
1313 if (num_to_delete != 0) |
|
1314 { |
5275
|
1315 octave_idx_type new_len = len; |
|
1316 |
|
1317 octave_idx_type iidx = 0; |
|
1318 |
|
1319 for (octave_idx_type i = 0; i < len; i++) |
4517
|
1320 if (i == idx_arg.elem (iidx)) |
|
1321 { |
|
1322 iidx++; |
|
1323 new_len--; |
|
1324 |
|
1325 if (iidx == num_to_delete) |
|
1326 break; |
|
1327 } |
|
1328 |
|
1329 if (new_len > 0) |
|
1330 { |
|
1331 T *new_data = new T [new_len]; |
|
1332 |
5275
|
1333 octave_idx_type ii = 0; |
4517
|
1334 iidx = 0; |
5275
|
1335 for (octave_idx_type i = 0; i < len; i++) |
4517
|
1336 { |
|
1337 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) |
|
1338 iidx++; |
|
1339 else |
|
1340 { |
6884
|
1341 new_data[ii] = xelem (i); |
4517
|
1342 ii++; |
|
1343 } |
|
1344 } |
|
1345 |
|
1346 if (--rep->count <= 0) |
|
1347 delete rep; |
|
1348 |
|
1349 rep = new typename Array<T>::ArrayRep (new_data, new_len); |
|
1350 |
|
1351 dimensions.resize (1); |
|
1352 dimensions(0) = new_len; |
|
1353 } |
|
1354 else |
|
1355 (*current_liboctave_error_handler) |
|
1356 ("A(idx) = []: index out of range"); |
|
1357 } |
|
1358 } |
|
1359 } |
|
1360 |
|
1361 template <class T> |
|
1362 void |
|
1363 Array<T>::maybe_delete_elements_2 (idx_vector& idx_arg) |
|
1364 { |
4548
|
1365 assert (ndims () == 2); |
|
1366 |
5275
|
1367 octave_idx_type nr = dim1 (); |
|
1368 octave_idx_type nc = dim2 (); |
4517
|
1369 |
5275
|
1370 octave_idx_type n; |
4517
|
1371 if (nr == 1) |
|
1372 n = nc; |
|
1373 else if (nc == 1) |
|
1374 n = nr; |
|
1375 else |
|
1376 { |
4756
|
1377 // Reshape to row vector for Matlab compatibility. |
|
1378 |
|
1379 n = nr * nc; |
|
1380 nr = 1; |
|
1381 nc = n; |
4517
|
1382 } |
|
1383 |
6525
|
1384 if (nr > 0 && nc > 0 && idx_arg.is_colon_equiv (n, 1)) |
4517
|
1385 { |
|
1386 // Either A(:) = [] or A(idx) = [] with idx enumerating all |
|
1387 // elements, so we delete all elements and return [](0x0). To |
|
1388 // preserve the orientation of the vector, you have to use |
|
1389 // A(idx,:) = [] (delete rows) or A(:,idx) (delete columns). |
|
1390 |
|
1391 resize_no_fill (0, 0); |
|
1392 return; |
|
1393 } |
|
1394 |
|
1395 idx_arg.sort (true); |
|
1396 |
5275
|
1397 octave_idx_type num_to_delete = idx_arg.length (n); |
4517
|
1398 |
|
1399 if (num_to_delete != 0) |
|
1400 { |
5275
|
1401 octave_idx_type new_n = n; |
|
1402 |
|
1403 octave_idx_type iidx = 0; |
|
1404 |
|
1405 for (octave_idx_type i = 0; i < n; i++) |
4517
|
1406 if (i == idx_arg.elem (iidx)) |
|
1407 { |
|
1408 iidx++; |
|
1409 new_n--; |
|
1410 |
|
1411 if (iidx == num_to_delete) |
|
1412 break; |
|
1413 } |
|
1414 |
|
1415 if (new_n > 0) |
|
1416 { |
|
1417 T *new_data = new T [new_n]; |
|
1418 |
5275
|
1419 octave_idx_type ii = 0; |
4517
|
1420 iidx = 0; |
5275
|
1421 for (octave_idx_type i = 0; i < n; i++) |
4517
|
1422 { |
|
1423 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) |
|
1424 iidx++; |
|
1425 else |
|
1426 { |
6884
|
1427 new_data[ii] = xelem (i); |
4517
|
1428 |
|
1429 ii++; |
|
1430 } |
|
1431 } |
|
1432 |
|
1433 if (--(Array<T>::rep)->count <= 0) |
|
1434 delete Array<T>::rep; |
|
1435 |
|
1436 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_n); |
|
1437 |
|
1438 dimensions.resize (2); |
|
1439 |
|
1440 if (nr == 1) |
|
1441 { |
|
1442 dimensions(0) = 1; |
|
1443 dimensions(1) = new_n; |
|
1444 } |
|
1445 else |
|
1446 { |
|
1447 dimensions(0) = new_n; |
|
1448 dimensions(1) = 1; |
|
1449 } |
|
1450 } |
|
1451 else |
|
1452 (*current_liboctave_error_handler) |
|
1453 ("A(idx) = []: index out of range"); |
|
1454 } |
|
1455 } |
|
1456 |
|
1457 template <class T> |
|
1458 void |
|
1459 Array<T>::maybe_delete_elements (idx_vector& idx_i, idx_vector& idx_j) |
|
1460 { |
4548
|
1461 assert (ndims () == 2); |
|
1462 |
5275
|
1463 octave_idx_type nr = dim1 (); |
|
1464 octave_idx_type nc = dim2 (); |
4517
|
1465 |
|
1466 if (nr == 0 && nc == 0) |
|
1467 return; |
|
1468 |
|
1469 if (idx_i.is_colon ()) |
|
1470 { |
|
1471 if (idx_j.is_colon ()) |
|
1472 { |
|
1473 // A(:,:) -- We are deleting columns and rows, so the result |
|
1474 // is [](0x0). |
|
1475 |
|
1476 resize_no_fill (0, 0); |
|
1477 return; |
|
1478 } |
|
1479 |
|
1480 if (idx_j.is_colon_equiv (nc, 1)) |
|
1481 { |
|
1482 // A(:,j) -- We are deleting columns by enumerating them, |
|
1483 // If we enumerate all of them, we should have zero columns |
|
1484 // with the same number of rows that we started with. |
|
1485 |
|
1486 resize_no_fill (nr, 0); |
|
1487 return; |
|
1488 } |
|
1489 } |
|
1490 |
|
1491 if (idx_j.is_colon () && idx_i.is_colon_equiv (nr, 1)) |
|
1492 { |
|
1493 // A(i,:) -- We are deleting rows by enumerating them. If we |
|
1494 // enumerate all of them, we should have zero rows with the |
|
1495 // same number of columns that we started with. |
|
1496 |
|
1497 resize_no_fill (0, nc); |
|
1498 return; |
|
1499 } |
|
1500 |
|
1501 if (idx_i.is_colon_equiv (nr, 1)) |
|
1502 { |
|
1503 if (idx_j.is_colon_equiv (nc, 1)) |
|
1504 resize_no_fill (0, 0); |
|
1505 else |
|
1506 { |
|
1507 idx_j.sort (true); |
|
1508 |
5275
|
1509 octave_idx_type num_to_delete = idx_j.length (nc); |
4517
|
1510 |
|
1511 if (num_to_delete != 0) |
|
1512 { |
|
1513 if (nr == 1 && num_to_delete == nc) |
|
1514 resize_no_fill (0, 0); |
|
1515 else |
|
1516 { |
5275
|
1517 octave_idx_type new_nc = nc; |
|
1518 |
|
1519 octave_idx_type iidx = 0; |
|
1520 |
|
1521 for (octave_idx_type j = 0; j < nc; j++) |
4517
|
1522 if (j == idx_j.elem (iidx)) |
|
1523 { |
|
1524 iidx++; |
|
1525 new_nc--; |
|
1526 |
|
1527 if (iidx == num_to_delete) |
|
1528 break; |
|
1529 } |
|
1530 |
|
1531 if (new_nc > 0) |
|
1532 { |
|
1533 T *new_data = new T [nr * new_nc]; |
|
1534 |
5275
|
1535 octave_idx_type jj = 0; |
4517
|
1536 iidx = 0; |
5275
|
1537 for (octave_idx_type j = 0; j < nc; j++) |
4517
|
1538 { |
|
1539 if (iidx < num_to_delete && j == idx_j.elem (iidx)) |
|
1540 iidx++; |
|
1541 else |
|
1542 { |
5275
|
1543 for (octave_idx_type i = 0; i < nr; i++) |
6884
|
1544 new_data[nr*jj+i] = xelem (i, j); |
4517
|
1545 jj++; |
|
1546 } |
|
1547 } |
|
1548 |
|
1549 if (--(Array<T>::rep)->count <= 0) |
|
1550 delete Array<T>::rep; |
|
1551 |
|
1552 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, nr * new_nc); |
|
1553 |
|
1554 dimensions.resize (2); |
|
1555 dimensions(1) = new_nc; |
|
1556 } |
|
1557 else |
|
1558 (*current_liboctave_error_handler) |
|
1559 ("A(idx) = []: index out of range"); |
|
1560 } |
|
1561 } |
|
1562 } |
|
1563 } |
|
1564 else if (idx_j.is_colon_equiv (nc, 1)) |
|
1565 { |
|
1566 if (idx_i.is_colon_equiv (nr, 1)) |
|
1567 resize_no_fill (0, 0); |
|
1568 else |
|
1569 { |
|
1570 idx_i.sort (true); |
|
1571 |
5275
|
1572 octave_idx_type num_to_delete = idx_i.length (nr); |
4517
|
1573 |
|
1574 if (num_to_delete != 0) |
|
1575 { |
|
1576 if (nc == 1 && num_to_delete == nr) |
|
1577 resize_no_fill (0, 0); |
|
1578 else |
|
1579 { |
5275
|
1580 octave_idx_type new_nr = nr; |
|
1581 |
|
1582 octave_idx_type iidx = 0; |
|
1583 |
|
1584 for (octave_idx_type i = 0; i < nr; i++) |
4517
|
1585 if (i == idx_i.elem (iidx)) |
|
1586 { |
|
1587 iidx++; |
|
1588 new_nr--; |
|
1589 |
|
1590 if (iidx == num_to_delete) |
|
1591 break; |
|
1592 } |
|
1593 |
|
1594 if (new_nr > 0) |
|
1595 { |
|
1596 T *new_data = new T [new_nr * nc]; |
|
1597 |
5275
|
1598 octave_idx_type ii = 0; |
4517
|
1599 iidx = 0; |
5275
|
1600 for (octave_idx_type i = 0; i < nr; i++) |
4517
|
1601 { |
|
1602 if (iidx < num_to_delete && i == idx_i.elem (iidx)) |
|
1603 iidx++; |
|
1604 else |
|
1605 { |
5275
|
1606 for (octave_idx_type j = 0; j < nc; j++) |
6884
|
1607 new_data[new_nr*j+ii] = xelem (i, j); |
4517
|
1608 ii++; |
|
1609 } |
|
1610 } |
|
1611 |
|
1612 if (--(Array<T>::rep)->count <= 0) |
|
1613 delete Array<T>::rep; |
|
1614 |
|
1615 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_nr * nc); |
|
1616 |
|
1617 dimensions.resize (2); |
|
1618 dimensions(0) = new_nr; |
|
1619 } |
|
1620 else |
|
1621 (*current_liboctave_error_handler) |
|
1622 ("A(idx) = []: index out of range"); |
|
1623 } |
|
1624 } |
|
1625 } |
|
1626 } |
|
1627 } |
|
1628 |
|
1629 template <class T> |
|
1630 void |
|
1631 Array<T>::maybe_delete_elements (idx_vector&, idx_vector&, idx_vector&) |
|
1632 { |
|
1633 assert (0); |
|
1634 } |
|
1635 |
|
1636 template <class T> |
|
1637 void |
4585
|
1638 Array<T>::maybe_delete_elements (Array<idx_vector>& ra_idx, const T& rfv) |
4517
|
1639 { |
5275
|
1640 octave_idx_type n_idx = ra_idx.length (); |
4517
|
1641 |
|
1642 dim_vector lhs_dims = dims (); |
|
1643 |
6388
|
1644 int n_lhs_dims = lhs_dims.length (); |
|
1645 |
4821
|
1646 if (lhs_dims.all_zero ()) |
|
1647 return; |
|
1648 |
6384
|
1649 if (n_idx == 1 && ra_idx(0).is_colon ()) |
|
1650 { |
|
1651 resize (dim_vector (0, 0), rfv); |
|
1652 return; |
|
1653 } |
|
1654 |
6388
|
1655 if (n_idx > n_lhs_dims) |
|
1656 { |
|
1657 for (int i = n_idx; i < n_lhs_dims; i++) |
|
1658 { |
|
1659 // Ensure that extra indices are either colon or 1. |
|
1660 |
|
1661 if (! ra_idx(i).is_colon_equiv (1, 1)) |
|
1662 { |
|
1663 (*current_liboctave_error_handler) |
|
1664 ("index exceeds array dimensions"); |
|
1665 return; |
|
1666 } |
|
1667 } |
|
1668 |
|
1669 ra_idx.resize (n_lhs_dims); |
|
1670 |
|
1671 n_idx = n_lhs_dims; |
|
1672 } |
4757
|
1673 |
4740
|
1674 Array<int> idx_is_colon (n_idx, 0); |
|
1675 |
|
1676 Array<int> idx_is_colon_equiv (n_idx, 0); |
4517
|
1677 |
|
1678 // Initialization of colon arrays. |
4757
|
1679 |
5275
|
1680 for (octave_idx_type i = 0; i < n_idx; i++) |
4517
|
1681 { |
4585
|
1682 idx_is_colon_equiv(i) = ra_idx(i).is_colon_equiv (lhs_dims(i), 1); |
|
1683 |
|
1684 idx_is_colon(i) = ra_idx(i).is_colon (); |
4517
|
1685 } |
|
1686 |
4755
|
1687 bool idx_ok = true; |
|
1688 |
|
1689 // Check for index out of bounds. |
|
1690 |
5275
|
1691 for (octave_idx_type i = 0 ; i < n_idx - 1; i++) |
4517
|
1692 { |
4755
|
1693 if (! (idx_is_colon(i) || idx_is_colon_equiv(i))) |
|
1694 { |
|
1695 ra_idx(i).sort (true); |
4757
|
1696 |
4755
|
1697 if (ra_idx(i).max () > lhs_dims(i)) |
|
1698 { |
|
1699 (*current_liboctave_error_handler) |
|
1700 ("index exceeds array dimensions"); |
4757
|
1701 |
4755
|
1702 idx_ok = false; |
|
1703 break; |
|
1704 } |
|
1705 else if (ra_idx(i).min () < 0) // I believe this is checked elsewhere |
|
1706 { |
|
1707 (*current_liboctave_error_handler) |
|
1708 ("index must be one or larger"); |
|
1709 |
|
1710 idx_ok = false; |
|
1711 break; |
|
1712 } |
|
1713 } |
4517
|
1714 } |
4757
|
1715 |
4755
|
1716 if (n_idx <= n_lhs_dims) |
4517
|
1717 { |
5275
|
1718 octave_idx_type last_idx = ra_idx(n_idx-1).max (); |
|
1719 |
|
1720 octave_idx_type sum_el = lhs_dims(n_idx-1); |
|
1721 |
|
1722 for (octave_idx_type i = n_idx; i < n_lhs_dims; i++) |
4755
|
1723 sum_el *= lhs_dims(i); |
|
1724 |
|
1725 if (last_idx > sum_el - 1) |
|
1726 { |
|
1727 (*current_liboctave_error_handler) |
|
1728 ("index exceeds array dimensions"); |
|
1729 |
|
1730 idx_ok = false; |
|
1731 } |
4757
|
1732 } |
4755
|
1733 |
|
1734 if (idx_ok) |
|
1735 { |
|
1736 if (n_idx > 1 |
|
1737 && (all_ones (idx_is_colon) || all_ones (idx_is_colon_equiv))) |
4517
|
1738 { |
4755
|
1739 // A(:,:,:) -- we are deleting elements in all dimensions, so |
|
1740 // the result is [](0x0x0). |
|
1741 |
|
1742 dim_vector zeros; |
|
1743 zeros.resize (n_idx); |
|
1744 |
|
1745 for (int i = 0; i < n_idx; i++) |
|
1746 zeros(i) = 0; |
|
1747 |
|
1748 resize (zeros, rfv); |
4517
|
1749 } |
|
1750 |
4755
|
1751 else if (n_idx > 1 |
|
1752 && num_ones (idx_is_colon) == n_idx - 1 |
|
1753 && num_ones (idx_is_colon_equiv) == n_idx) |
|
1754 { |
|
1755 // A(:,:,j) -- we are deleting elements in one dimension by |
|
1756 // enumerating them. |
|
1757 // |
|
1758 // If we enumerate all of the elements, we should have zero |
|
1759 // elements in that dimension with the same number of elements |
|
1760 // in the other dimensions that we started with. |
|
1761 |
|
1762 dim_vector temp_dims; |
|
1763 temp_dims.resize (n_idx); |
|
1764 |
5275
|
1765 for (octave_idx_type i = 0; i < n_idx; i++) |
4755
|
1766 { |
|
1767 if (idx_is_colon (i)) |
|
1768 temp_dims(i) = lhs_dims(i); |
|
1769 else |
|
1770 temp_dims(i) = 0; |
|
1771 } |
|
1772 |
|
1773 resize (temp_dims); |
|
1774 } |
|
1775 else if (n_idx > 1 && num_ones (idx_is_colon) == n_idx - 1) |
4741
|
1776 { |
4755
|
1777 // We have colons in all indices except for one. |
|
1778 // This index tells us which slice to delete |
|
1779 |
|
1780 if (n_idx < n_lhs_dims) |
|
1781 { |
|
1782 // Collapse dimensions beyond last index. |
|
1783 |
5781
|
1784 if (! (ra_idx(n_idx-1).is_colon ())) |
|
1785 (*current_liboctave_warning_with_id_handler) |
|
1786 ("Octave:fortran-indexing", |
|
1787 "fewer indices than dimensions for N-d array"); |
4755
|
1788 |
5275
|
1789 for (octave_idx_type i = n_idx; i < n_lhs_dims; i++) |
4755
|
1790 lhs_dims(n_idx-1) *= lhs_dims(i); |
|
1791 |
|
1792 lhs_dims.resize (n_idx); |
|
1793 |
|
1794 // Reshape *this. |
|
1795 dimensions = lhs_dims; |
|
1796 } |
|
1797 |
|
1798 int non_col = 0; |
|
1799 |
|
1800 // Find the non-colon column. |
|
1801 |
5275
|
1802 for (octave_idx_type i = 0; i < n_idx; i++) |
4755
|
1803 { |
|
1804 if (! idx_is_colon(i)) |
|
1805 non_col = i; |
|
1806 } |
|
1807 |
|
1808 // The length of the non-colon dimension. |
|
1809 |
5275
|
1810 octave_idx_type non_col_dim = lhs_dims (non_col); |
|
1811 |
|
1812 octave_idx_type num_to_delete = ra_idx(non_col).length (lhs_dims (non_col)); |
4755
|
1813 |
|
1814 if (num_to_delete > 0) |
|
1815 { |
|
1816 int temp = lhs_dims.num_ones (); |
|
1817 |
|
1818 if (non_col_dim == 1) |
|
1819 temp--; |
|
1820 |
|
1821 if (temp == n_idx - 1 && num_to_delete == non_col_dim) |
|
1822 { |
|
1823 // We have A with (1x1x4), where A(1,:,1:4) |
|
1824 // Delete all (0x0x0) |
|
1825 |
|
1826 dim_vector zero_dims (n_idx, 0); |
|
1827 |
|
1828 resize (zero_dims, rfv); |
|
1829 } |
|
1830 else |
|
1831 { |
|
1832 // New length of non-colon dimension |
|
1833 // (calculated in the next for loop) |
|
1834 |
5275
|
1835 octave_idx_type new_dim = non_col_dim; |
|
1836 |
|
1837 octave_idx_type iidx = 0; |
|
1838 |
|
1839 for (octave_idx_type j = 0; j < non_col_dim; j++) |
4755
|
1840 if (j == ra_idx(non_col).elem (iidx)) |
|
1841 { |
|
1842 iidx++; |
|
1843 |
|
1844 new_dim--; |
|
1845 |
|
1846 if (iidx == num_to_delete) |
|
1847 break; |
|
1848 } |
|
1849 |
|
1850 // Creating the new nd array after deletions. |
|
1851 |
|
1852 if (new_dim > 0) |
|
1853 { |
|
1854 // Calculate number of elements in new array. |
|
1855 |
5275
|
1856 octave_idx_type num_new_elem=1; |
4755
|
1857 |
|
1858 for (int i = 0; i < n_idx; i++) |
|
1859 { |
|
1860 if (i == non_col) |
|
1861 num_new_elem *= new_dim; |
|
1862 |
|
1863 else |
|
1864 num_new_elem *= lhs_dims(i); |
|
1865 } |
|
1866 |
|
1867 T *new_data = new T [num_new_elem]; |
|
1868 |
5275
|
1869 Array<octave_idx_type> result_idx (n_lhs_dims, 0); |
4755
|
1870 |
|
1871 dim_vector new_lhs_dim = lhs_dims; |
|
1872 |
|
1873 new_lhs_dim(non_col) = new_dim; |
|
1874 |
5275
|
1875 octave_idx_type num_elem = 1; |
|
1876 |
|
1877 octave_idx_type numidx = 0; |
|
1878 |
|
1879 octave_idx_type n = length (); |
4755
|
1880 |
|
1881 for (int i = 0; i < n_lhs_dims; i++) |
|
1882 if (i != non_col) |
|
1883 num_elem *= lhs_dims(i); |
|
1884 |
|
1885 num_elem *= ra_idx(non_col).capacity (); |
|
1886 |
5275
|
1887 for (octave_idx_type i = 0; i < n; i++) |
4755
|
1888 { |
|
1889 if (numidx < num_elem |
|
1890 && is_in (result_idx(non_col), ra_idx(non_col))) |
|
1891 numidx++; |
|
1892 |
|
1893 else |
|
1894 { |
5275
|
1895 Array<octave_idx_type> temp_result_idx = result_idx; |
|
1896 |
|
1897 octave_idx_type num_lgt = how_many_lgt (result_idx(non_col), |
4755
|
1898 ra_idx(non_col)); |
|
1899 |
|
1900 temp_result_idx(non_col) -= num_lgt; |
|
1901 |
5275
|
1902 octave_idx_type kidx |
4755
|
1903 = ::compute_index (temp_result_idx, new_lhs_dim); |
|
1904 |
6884
|
1905 new_data[kidx] = xelem (result_idx); |
4755
|
1906 } |
|
1907 |
|
1908 increment_index (result_idx, lhs_dims); |
|
1909 } |
|
1910 |
|
1911 if (--rep->count <= 0) |
|
1912 delete rep; |
|
1913 |
|
1914 rep = new typename Array<T>::ArrayRep (new_data, |
|
1915 num_new_elem); |
|
1916 |
|
1917 dimensions = new_lhs_dim; |
|
1918 } |
|
1919 } |
|
1920 } |
4517
|
1921 } |
4755
|
1922 else if (n_idx == 1) |
4517
|
1923 { |
4821
|
1924 // This handle cases where we only have one index (not |
|
1925 // colon). The index denotes which elements we should |
|
1926 // delete in the array which can be of any dimension. We |
|
1927 // return a column vector, except for the case where we are |
|
1928 // operating on a row vector. The elements are numerated |
|
1929 // column by column. |
4755
|
1930 // |
|
1931 // A(3,3,3)=2; |
|
1932 // A(3:5) = []; A(6)=[] |
4757
|
1933 |
5275
|
1934 octave_idx_type lhs_numel = numel (); |
4757
|
1935 |
4821
|
1936 idx_vector idx_vec = ra_idx(0); |
|
1937 |
5781
|
1938 idx_vec.freeze (lhs_numel, 0, true); |
4821
|
1939 |
|
1940 idx_vec.sort (true); |
|
1941 |
5275
|
1942 octave_idx_type num_to_delete = idx_vec.length (lhs_numel); |
4821
|
1943 |
|
1944 if (num_to_delete > 0) |
4517
|
1945 { |
5275
|
1946 octave_idx_type new_numel = lhs_numel - num_to_delete; |
4821
|
1947 |
|
1948 T *new_data = new T[new_numel]; |
|
1949 |
5275
|
1950 Array<octave_idx_type> lhs_ra_idx (ndims (), 0); |
|
1951 |
|
1952 octave_idx_type ii = 0; |
|
1953 octave_idx_type iidx = 0; |
|
1954 |
|
1955 for (octave_idx_type i = 0; i < lhs_numel; i++) |
4755
|
1956 { |
4821
|
1957 if (iidx < num_to_delete && i == idx_vec.elem (iidx)) |
|
1958 { |
|
1959 iidx++; |
|
1960 } |
|
1961 else |
|
1962 { |
6884
|
1963 new_data[ii++] = xelem (lhs_ra_idx); |
4821
|
1964 } |
|
1965 |
|
1966 increment_index (lhs_ra_idx, lhs_dims); |
|
1967 } |
|
1968 |
|
1969 if (--(Array<T>::rep)->count <= 0) |
|
1970 delete Array<T>::rep; |
|
1971 |
|
1972 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_numel); |
|
1973 |
|
1974 dimensions.resize (2); |
|
1975 |
|
1976 if (lhs_dims.length () == 2 && lhs_dims(1) == 1) |
|
1977 { |
|
1978 dimensions(0) = new_numel; |
|
1979 dimensions(1) = 1; |
4755
|
1980 } |
|
1981 else |
|
1982 { |
4821
|
1983 dimensions(0) = 1; |
|
1984 dimensions(1) = new_numel; |
4755
|
1985 } |
4517
|
1986 } |
|
1987 } |
4755
|
1988 else if (num_ones (idx_is_colon) < n_idx) |
|
1989 { |
|
1990 (*current_liboctave_error_handler) |
|
1991 ("a null assignment can have only one non-colon index"); |
|
1992 } |
4517
|
1993 } |
|
1994 } |
|
1995 |
|
1996 template <class T> |
|
1997 Array<T> |
6881
|
1998 Array<T>::value (void) const |
4517
|
1999 { |
|
2000 Array<T> retval; |
|
2001 |
|
2002 int n_idx = index_count (); |
|
2003 |
|
2004 if (n_idx == 2) |
|
2005 { |
|
2006 idx_vector *tmp = get_idx (); |
|
2007 |
|
2008 idx_vector idx_i = tmp[0]; |
|
2009 idx_vector idx_j = tmp[1]; |
|
2010 |
|
2011 retval = index (idx_i, idx_j); |
|
2012 } |
|
2013 else if (n_idx == 1) |
|
2014 { |
|
2015 retval = index (idx[0]); |
|
2016 } |
|
2017 else |
|
2018 (*current_liboctave_error_handler) |
|
2019 ("Array<T>::value: invalid number of indices specified"); |
|
2020 |
|
2021 clear_index (); |
|
2022 |
|
2023 return retval; |
|
2024 } |
|
2025 |
|
2026 template <class T> |
|
2027 Array<T> |
|
2028 Array<T>::index (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
2029 { |
|
2030 Array<T> retval; |
|
2031 |
5081
|
2032 dim_vector dv = idx_arg.orig_dimensions (); |
|
2033 |
|
2034 if (dv.length () > 2 || ndims () > 2) |
|
2035 retval = indexN (idx_arg, resize_ok, rfv); |
|
2036 else |
4517
|
2037 { |
5081
|
2038 switch (ndims ()) |
|
2039 { |
|
2040 case 1: |
|
2041 retval = index1 (idx_arg, resize_ok, rfv); |
|
2042 break; |
|
2043 |
|
2044 case 2: |
|
2045 retval = index2 (idx_arg, resize_ok, rfv); |
|
2046 break; |
|
2047 |
|
2048 default: |
|
2049 (*current_liboctave_error_handler) |
|
2050 ("invalid array (internal error)"); |
|
2051 break; |
|
2052 } |
4517
|
2053 } |
|
2054 |
|
2055 return retval; |
|
2056 } |
|
2057 |
|
2058 template <class T> |
|
2059 Array<T> |
|
2060 Array<T>::index1 (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
2061 { |
|
2062 Array<T> retval; |
|
2063 |
5275
|
2064 octave_idx_type len = length (); |
|
2065 |
|
2066 octave_idx_type n = idx_arg.freeze (len, "vector", resize_ok); |
4517
|
2067 |
|
2068 if (idx_arg) |
|
2069 { |
|
2070 if (idx_arg.is_colon_equiv (len)) |
|
2071 { |
|
2072 retval = *this; |
|
2073 } |
|
2074 else if (n == 0) |
|
2075 { |
|
2076 retval.resize_no_fill (0); |
|
2077 } |
|
2078 else if (len == 1 && n > 1 |
|
2079 && idx_arg.one_zero_only () |
|
2080 && idx_arg.ones_count () == n) |
|
2081 { |
4548
|
2082 retval.resize_and_fill (n, elem (0)); |
4517
|
2083 } |
|
2084 else |
|
2085 { |
|
2086 retval.resize_no_fill (n); |
|
2087 |
5275
|
2088 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2089 { |
5275
|
2090 octave_idx_type ii = idx_arg.elem (i); |
4517
|
2091 if (ii >= len) |
|
2092 retval.elem (i) = rfv; |
|
2093 else |
|
2094 retval.elem (i) = elem (ii); |
|
2095 } |
|
2096 } |
|
2097 } |
|
2098 |
|
2099 // idx_vector::freeze() printed an error message for us. |
|
2100 |
|
2101 return retval; |
|
2102 } |
|
2103 |
|
2104 template <class T> |
|
2105 Array<T> |
|
2106 Array<T>::index2 (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
2107 { |
|
2108 Array<T> retval; |
|
2109 |
4548
|
2110 assert (ndims () == 2); |
|
2111 |
5275
|
2112 octave_idx_type nr = dim1 (); |
|
2113 octave_idx_type nc = dim2 (); |
|
2114 |
|
2115 octave_idx_type orig_len = nr * nc; |
4517
|
2116 |
4832
|
2117 dim_vector idx_orig_dims = idx_arg.orig_dimensions (); |
|
2118 |
5275
|
2119 octave_idx_type idx_orig_rows = idx_arg.orig_rows (); |
|
2120 octave_idx_type idx_orig_columns = idx_arg.orig_columns (); |
4517
|
2121 |
|
2122 if (idx_arg.is_colon ()) |
|
2123 { |
|
2124 // Fast magic colon processing. |
|
2125 |
5275
|
2126 octave_idx_type result_nr = nr * nc; |
|
2127 octave_idx_type result_nc = 1; |
4517
|
2128 |
|
2129 retval = Array<T> (*this, dim_vector (result_nr, result_nc)); |
|
2130 } |
|
2131 else if (nr == 1 && nc == 1) |
|
2132 { |
|
2133 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); |
|
2134 |
5275
|
2135 octave_idx_type len = tmp.length (); |
4828
|
2136 |
|
2137 if (len == 0 && idx_arg.one_zero_only ()) |
|
2138 retval = Array<T> (tmp, dim_vector (0, 0)); |
4876
|
2139 else if (len >= idx_orig_dims.numel ()) |
4832
|
2140 retval = Array<T> (tmp, idx_orig_dims); |
4517
|
2141 } |
|
2142 else if (nr == 1 || nc == 1) |
|
2143 { |
|
2144 // If indexing a vector with a matrix, return value has same |
|
2145 // shape as the index. Otherwise, it has same orientation as |
|
2146 // indexed object. |
|
2147 |
4828
|
2148 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); |
4517
|
2149 |
5275
|
2150 octave_idx_type len = tmp.length (); |
4517
|
2151 |
4827
|
2152 if ((len != 0 && idx_arg.one_zero_only ()) |
|
2153 || idx_orig_rows == 1 || idx_orig_columns == 1) |
4517
|
2154 { |
4827
|
2155 if (nr == 1) |
|
2156 retval = Array<T> (tmp, dim_vector (1, len)); |
4517
|
2157 else |
4827
|
2158 retval = Array<T> (tmp, dim_vector (len, 1)); |
4517
|
2159 } |
4876
|
2160 else if (len >= idx_orig_dims.numel ()) |
4832
|
2161 retval = Array<T> (tmp, idx_orig_dims); |
4517
|
2162 } |
|
2163 else |
|
2164 { |
5781
|
2165 if (! (idx_arg.one_zero_only () |
|
2166 && idx_orig_rows == nr |
|
2167 && idx_orig_columns == nc)) |
|
2168 (*current_liboctave_warning_with_id_handler) |
|
2169 ("Octave:fortran-indexing", "single index used for matrix"); |
4517
|
2170 |
|
2171 // This code is only for indexing matrices. The vector |
|
2172 // cases are handled above. |
|
2173 |
|
2174 idx_arg.freeze (nr * nc, "matrix", resize_ok); |
|
2175 |
|
2176 if (idx_arg) |
|
2177 { |
5275
|
2178 octave_idx_type result_nr = idx_orig_rows; |
|
2179 octave_idx_type result_nc = idx_orig_columns; |
4517
|
2180 |
|
2181 if (idx_arg.one_zero_only ()) |
|
2182 { |
|
2183 result_nr = idx_arg.ones_count (); |
|
2184 result_nc = (result_nr > 0 ? 1 : 0); |
|
2185 } |
|
2186 |
|
2187 retval.resize_no_fill (result_nr, result_nc); |
|
2188 |
5275
|
2189 octave_idx_type k = 0; |
|
2190 for (octave_idx_type j = 0; j < result_nc; j++) |
4517
|
2191 { |
5275
|
2192 for (octave_idx_type i = 0; i < result_nr; i++) |
4517
|
2193 { |
5275
|
2194 octave_idx_type ii = idx_arg.elem (k++); |
4517
|
2195 if (ii >= orig_len) |
|
2196 retval.elem (i, j) = rfv; |
|
2197 else |
|
2198 { |
5275
|
2199 octave_idx_type fr = ii % nr; |
|
2200 octave_idx_type fc = (ii - fr) / nr; |
4517
|
2201 retval.elem (i, j) = elem (fr, fc); |
|
2202 } |
|
2203 } |
|
2204 } |
|
2205 } |
|
2206 // idx_vector::freeze() printed an error message for us. |
|
2207 } |
|
2208 |
|
2209 return retval; |
|
2210 } |
|
2211 |
|
2212 template <class T> |
|
2213 Array<T> |
4530
|
2214 Array<T>::indexN (idx_vector& ra_idx, int resize_ok, const T& rfv) const |
|
2215 { |
|
2216 Array<T> retval; |
|
2217 |
5519
|
2218 dim_vector dv = dims (); |
|
2219 |
|
2220 int n_dims = dv.length (); |
|
2221 |
|
2222 octave_idx_type orig_len = dv.numel (); |
4530
|
2223 |
4757
|
2224 dim_vector idx_orig_dims = ra_idx.orig_dimensions (); |
4530
|
2225 |
|
2226 if (ra_idx.is_colon ()) |
|
2227 { |
4651
|
2228 // Fast magic colon processing. |
|
2229 |
|
2230 retval = Array<T> (*this, dim_vector (orig_len, 1)); |
4530
|
2231 } |
4651
|
2232 else |
4530
|
2233 { |
5519
|
2234 bool vec_equiv = vector_equivalent (dv); |
|
2235 |
|
2236 if (! vec_equiv |
4651
|
2237 && ! (ra_idx.is_colon () |
5519
|
2238 || (ra_idx.one_zero_only () && idx_orig_dims == dv))) |
5781
|
2239 (*current_liboctave_warning_with_id_handler) |
|
2240 ("Octave:fortran-indexing", "single index used for N-d array"); |
4530
|
2241 |
5519
|
2242 octave_idx_type frozen_len |
|
2243 = ra_idx.freeze (orig_len, "nd-array", resize_ok); |
4530
|
2244 |
|
2245 if (ra_idx) |
4757
|
2246 { |
5519
|
2247 dim_vector result_dims; |
|
2248 |
|
2249 if (vec_equiv) |
|
2250 { |
|
2251 result_dims = dv; |
|
2252 |
|
2253 for (int i = 0; i < n_dims; i++) |
|
2254 { |
|
2255 if (result_dims(i) != 1) |
|
2256 { |
|
2257 // All but this dim should be one. |
|
2258 result_dims(i) = frozen_len; |
|
2259 break; |
|
2260 } |
|
2261 } |
|
2262 } |
|
2263 else |
|
2264 result_dims = idx_orig_dims; |
4530
|
2265 |
|
2266 if (ra_idx.one_zero_only ()) |
|
2267 { |
4651
|
2268 result_dims.resize (2); |
5275
|
2269 octave_idx_type ntot = ra_idx.ones_count (); |
4651
|
2270 result_dims(0) = ntot; |
|
2271 result_dims(1) = (ntot > 0 ? 1 : 0); |
4530
|
2272 } |
|
2273 |
4673
|
2274 result_dims.chop_trailing_singletons (); |
|
2275 |
4530
|
2276 retval.resize (result_dims); |
|
2277 |
5275
|
2278 octave_idx_type n = result_dims.numel (); |
4530
|
2279 |
5275
|
2280 octave_idx_type k = 0; |
|
2281 |
|
2282 for (octave_idx_type i = 0; i < n; i++) |
4530
|
2283 { |
5275
|
2284 octave_idx_type ii = ra_idx.elem (k++); |
4530
|
2285 |
|
2286 if (ii >= orig_len) |
5535
|
2287 retval.elem (i) = rfv; |
4530
|
2288 else |
5535
|
2289 retval.elem (i) = elem (ii); |
4530
|
2290 } |
|
2291 } |
|
2292 } |
|
2293 |
|
2294 return retval; |
|
2295 } |
|
2296 |
|
2297 template <class T> |
|
2298 Array<T> |
4517
|
2299 Array<T>::index (idx_vector& idx_i, idx_vector& idx_j, int resize_ok, |
|
2300 const T& rfv) const |
|
2301 { |
|
2302 Array<T> retval; |
|
2303 |
7189
|
2304 if (ndims () != 2) |
|
2305 { |
|
2306 Array<idx_vector> ra_idx (2); |
|
2307 ra_idx(0) = idx_i; |
|
2308 ra_idx(1) = idx_j; |
|
2309 return index (ra_idx, resize_ok, rfv); |
|
2310 } |
4548
|
2311 |
5275
|
2312 octave_idx_type nr = dim1 (); |
|
2313 octave_idx_type nc = dim2 (); |
|
2314 |
|
2315 octave_idx_type n = idx_i.freeze (nr, "row", resize_ok); |
|
2316 octave_idx_type m = idx_j.freeze (nc, "column", resize_ok); |
4517
|
2317 |
|
2318 if (idx_i && idx_j) |
|
2319 { |
|
2320 if (idx_i.orig_empty () || idx_j.orig_empty () || n == 0 || m == 0) |
|
2321 { |
|
2322 retval.resize_no_fill (n, m); |
|
2323 } |
|
2324 else if (idx_i.is_colon_equiv (nr) && idx_j.is_colon_equiv (nc)) |
|
2325 { |
|
2326 retval = *this; |
|
2327 } |
|
2328 else |
|
2329 { |
|
2330 retval.resize_no_fill (n, m); |
|
2331 |
5275
|
2332 for (octave_idx_type j = 0; j < m; j++) |
4517
|
2333 { |
5275
|
2334 octave_idx_type jj = idx_j.elem (j); |
|
2335 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2336 { |
5275
|
2337 octave_idx_type ii = idx_i.elem (i); |
4517
|
2338 if (ii >= nr || jj >= nc) |
|
2339 retval.elem (i, j) = rfv; |
|
2340 else |
|
2341 retval.elem (i, j) = elem (ii, jj); |
|
2342 } |
|
2343 } |
|
2344 } |
|
2345 } |
|
2346 |
|
2347 // idx_vector::freeze() printed an error message for us. |
|
2348 |
|
2349 return retval; |
|
2350 } |
|
2351 |
|
2352 template <class T> |
|
2353 Array<T> |
5992
|
2354 Array<T>::index (Array<idx_vector>& ra_idx, int resize_ok, const T& rfv) const |
4517
|
2355 { |
4530
|
2356 // This function handles all calls with more than one idx. |
|
2357 // For (3x3x3), the call can be A(2,5), A(2,:,:), A(3,2,3) etc. |
|
2358 |
4517
|
2359 Array<T> retval; |
|
2360 |
|
2361 int n_dims = dimensions.length (); |
|
2362 |
4737
|
2363 // Remove trailing singletons in ra_idx, but leave at least ndims |
|
2364 // elements. |
|
2365 |
5275
|
2366 octave_idx_type ra_idx_len = ra_idx.length (); |
4737
|
2367 |
4887
|
2368 bool trim_trailing_singletons = true; |
5275
|
2369 for (octave_idx_type j = ra_idx_len; j > n_dims; j--) |
4737
|
2370 { |
4887
|
2371 idx_vector iidx = ra_idx (ra_idx_len-1); |
|
2372 if (iidx.capacity () == 1 && trim_trailing_singletons) |
4737
|
2373 ra_idx_len--; |
|
2374 else |
4887
|
2375 trim_trailing_singletons = false; |
|
2376 |
5992
|
2377 if (! resize_ok) |
|
2378 { |
|
2379 for (octave_idx_type i = 0; i < iidx.capacity (); i++) |
|
2380 if (iidx (i) != 0) |
|
2381 { |
|
2382 (*current_liboctave_error_handler) |
|
2383 ("index exceeds N-d array dimensions"); |
|
2384 |
|
2385 return retval; |
|
2386 } |
|
2387 } |
4737
|
2388 } |
|
2389 |
|
2390 ra_idx.resize (ra_idx_len); |
|
2391 |
4887
|
2392 dim_vector new_dims = dims (); |
|
2393 dim_vector frozen_lengths; |
|
2394 |
|
2395 if (! any_orig_empty (ra_idx) && ra_idx_len < n_dims) |
|
2396 frozen_lengths = short_freeze (ra_idx, dimensions, resize_ok); |
|
2397 else |
4517
|
2398 { |
4887
|
2399 new_dims.resize (ra_idx_len, 1); |
|
2400 frozen_lengths = freeze (ra_idx, new_dims, resize_ok); |
4530
|
2401 } |
|
2402 |
4887
|
2403 if (all_ok (ra_idx)) |
4530
|
2404 { |
4887
|
2405 if (any_orig_empty (ra_idx) || frozen_lengths.any_zero ()) |
|
2406 { |
|
2407 frozen_lengths.chop_trailing_singletons (); |
|
2408 |
|
2409 retval.resize (frozen_lengths); |
|
2410 } |
|
2411 else if (frozen_lengths.length () == n_dims |
|
2412 && all_colon_equiv (ra_idx, dimensions)) |
|
2413 { |
|
2414 retval = *this; |
|
2415 } |
|
2416 else |
4517
|
2417 { |
4887
|
2418 dim_vector frozen_lengths_for_resize = frozen_lengths; |
|
2419 |
|
2420 frozen_lengths_for_resize.chop_trailing_singletons (); |
|
2421 |
|
2422 retval.resize (frozen_lengths_for_resize); |
|
2423 |
5275
|
2424 octave_idx_type n = retval.length (); |
|
2425 |
|
2426 Array<octave_idx_type> result_idx (ra_idx.length (), 0); |
|
2427 |
|
2428 Array<octave_idx_type> elt_idx; |
|
2429 |
|
2430 for (octave_idx_type i = 0; i < n; i++) |
4530
|
2431 { |
4887
|
2432 elt_idx = get_elt_idx (ra_idx, result_idx); |
|
2433 |
5275
|
2434 octave_idx_type numelem_elt = get_scalar_idx (elt_idx, new_dims); |
4887
|
2435 |
5992
|
2436 if (numelem_elt >= length () || numelem_elt < 0) |
|
2437 retval.elem (i) = rfv; |
4887
|
2438 else |
|
2439 retval.elem (i) = elem (numelem_elt); |
|
2440 |
|
2441 increment_index (result_idx, frozen_lengths); |
|
2442 |
4517
|
2443 } |
|
2444 } |
|
2445 } |
|
2446 |
|
2447 return retval; |
|
2448 } |
|
2449 |
5775
|
2450 // FIXME -- this is a mess. |
4517
|
2451 |
|
2452 template <class LT, class RT> |
|
2453 int |
|
2454 assign (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2455 { |
6388
|
2456 int n_idx = lhs.index_count (); |
|
2457 |
|
2458 // kluge... |
|
2459 if (lhs.ndims () == 0) |
|
2460 lhs.resize_no_fill (0, 0); |
|
2461 |
|
2462 return (lhs.ndims () == 2 |
|
2463 && (n_idx == 1 |
|
2464 || (n_idx < 3 |
|
2465 && rhs.ndims () == 2 |
|
2466 && rhs.rows () == 0 && rhs.columns () == 0))) |
|
2467 ? assign2 (lhs, rhs, rfv) : assignN (lhs, rhs, rfv); |
4517
|
2468 } |
|
2469 |
|
2470 template <class LT, class RT> |
|
2471 int |
|
2472 assign1 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2473 { |
|
2474 int retval = 1; |
|
2475 |
|
2476 idx_vector *tmp = lhs.get_idx (); |
|
2477 |
|
2478 idx_vector lhs_idx = tmp[0]; |
|
2479 |
5275
|
2480 octave_idx_type lhs_len = lhs.length (); |
|
2481 octave_idx_type rhs_len = rhs.length (); |
|
2482 |
5781
|
2483 octave_idx_type n = lhs_idx.freeze (lhs_len, "vector", true); |
4517
|
2484 |
|
2485 if (n != 0) |
|
2486 { |
6389
|
2487 dim_vector lhs_dims = lhs.dims (); |
|
2488 |
6922
|
2489 if (lhs_len != 0 |
|
2490 || lhs_dims.all_zero () |
|
2491 || (lhs_dims.length () == 2 && lhs_dims(0) < 2)) |
4517
|
2492 { |
6392
|
2493 if (rhs_len == n || rhs_len == 1) |
|
2494 { |
6884
|
2495 lhs.make_unique (); |
|
2496 |
6392
|
2497 octave_idx_type max_idx = lhs_idx.max () + 1; |
|
2498 if (max_idx > lhs_len) |
|
2499 lhs.resize_and_fill (max_idx, rfv); |
|
2500 } |
|
2501 |
|
2502 if (rhs_len == n) |
|
2503 { |
6884
|
2504 lhs.make_unique (); |
|
2505 |
|
2506 if (lhs_idx.is_colon ()) |
6392
|
2507 { |
6884
|
2508 for (octave_idx_type i = 0; i < n; i++) |
|
2509 lhs.xelem (i) = rhs.elem (i); |
|
2510 } |
|
2511 else |
|
2512 { |
|
2513 for (octave_idx_type i = 0; i < n; i++) |
|
2514 { |
|
2515 octave_idx_type ii = lhs_idx.elem (i); |
|
2516 lhs.xelem (ii) = rhs.elem (i); |
|
2517 } |
6392
|
2518 } |
|
2519 } |
|
2520 else if (rhs_len == 1) |
|
2521 { |
6884
|
2522 lhs.make_unique (); |
|
2523 |
6392
|
2524 RT scalar = rhs.elem (0); |
|
2525 |
6884
|
2526 if (lhs_idx.is_colon ()) |
6392
|
2527 { |
6884
|
2528 for (octave_idx_type i = 0; i < n; i++) |
|
2529 lhs.xelem (i) = scalar; |
|
2530 } |
|
2531 else |
|
2532 { |
|
2533 for (octave_idx_type i = 0; i < n; i++) |
|
2534 { |
|
2535 octave_idx_type ii = lhs_idx.elem (i); |
|
2536 lhs.xelem (ii) = scalar; |
|
2537 } |
6392
|
2538 } |
|
2539 } |
|
2540 else |
|
2541 { |
|
2542 (*current_liboctave_error_handler) |
|
2543 ("A(I) = X: X must be a scalar or a vector with same length as I"); |
|
2544 |
|
2545 retval = 0; |
|
2546 } |
4517
|
2547 } |
6922
|
2548 else |
|
2549 { |
|
2550 (*current_liboctave_error_handler) |
|
2551 ("A(I) = X: unable to resize A"); |
|
2552 |
|
2553 retval = 0; |
|
2554 } |
4517
|
2555 } |
|
2556 else if (lhs_idx.is_colon ()) |
|
2557 { |
6384
|
2558 dim_vector lhs_dims = lhs.dims (); |
|
2559 |
|
2560 if (lhs_dims.all_zero ()) |
4517
|
2561 { |
6884
|
2562 lhs.make_unique (); |
|
2563 |
4517
|
2564 lhs.resize_no_fill (rhs_len); |
|
2565 |
5275
|
2566 for (octave_idx_type i = 0; i < rhs_len; i++) |
6884
|
2567 lhs.xelem (i) = rhs.elem (i); |
4517
|
2568 } |
6553
|
2569 else if (rhs_len != lhs_len) |
4517
|
2570 (*current_liboctave_error_handler) |
|
2571 ("A(:) = X: A must be the same size as X"); |
|
2572 } |
|
2573 else if (! (rhs_len == 1 || rhs_len == 0)) |
|
2574 { |
|
2575 (*current_liboctave_error_handler) |
|
2576 ("A([]) = X: X must also be an empty matrix or a scalar"); |
|
2577 |
|
2578 retval = 0; |
|
2579 } |
|
2580 |
|
2581 lhs.clear_index (); |
|
2582 |
|
2583 return retval; |
|
2584 } |
|
2585 |
|
2586 #define MAYBE_RESIZE_LHS \ |
|
2587 do \ |
|
2588 { \ |
5275
|
2589 octave_idx_type max_row_idx = idx_i_is_colon ? rhs_nr : idx_i.max () + 1; \ |
|
2590 octave_idx_type max_col_idx = idx_j_is_colon ? rhs_nc : idx_j.max () + 1; \ |
4517
|
2591 \ |
5275
|
2592 octave_idx_type new_nr = max_row_idx > lhs_nr ? max_row_idx : lhs_nr; \ |
|
2593 octave_idx_type new_nc = max_col_idx > lhs_nc ? max_col_idx : lhs_nc; \ |
4517
|
2594 \ |
|
2595 lhs.resize_and_fill (new_nr, new_nc, rfv); \ |
|
2596 } \ |
|
2597 while (0) |
|
2598 |
|
2599 template <class LT, class RT> |
|
2600 int |
|
2601 assign2 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2602 { |
|
2603 int retval = 1; |
|
2604 |
|
2605 int n_idx = lhs.index_count (); |
|
2606 |
5275
|
2607 octave_idx_type lhs_nr = lhs.rows (); |
|
2608 octave_idx_type lhs_nc = lhs.cols (); |
4517
|
2609 |
5047
|
2610 Array<RT> xrhs = rhs; |
|
2611 |
5275
|
2612 octave_idx_type rhs_nr = xrhs.rows (); |
|
2613 octave_idx_type rhs_nc = xrhs.cols (); |
5047
|
2614 |
|
2615 if (xrhs.ndims () > 2) |
4707
|
2616 { |
5047
|
2617 xrhs = xrhs.squeeze (); |
|
2618 |
|
2619 dim_vector dv_tmp = xrhs.dims (); |
4709
|
2620 |
4708
|
2621 switch (dv_tmp.length ()) |
4707
|
2622 { |
4708
|
2623 case 1: |
5775
|
2624 // FIXME -- this case should be unnecessary, because |
5047
|
2625 // squeeze should always return an object with 2 dimensions. |
4708
|
2626 if (rhs_nr == 1) |
|
2627 rhs_nc = dv_tmp.elem (0); |
|
2628 break; |
4709
|
2629 |
4708
|
2630 case 2: |
4707
|
2631 rhs_nr = dv_tmp.elem (0); |
|
2632 rhs_nc = dv_tmp.elem (1); |
4708
|
2633 break; |
|
2634 |
|
2635 default: |
|
2636 (*current_liboctave_error_handler) |
|
2637 ("Array<T>::assign2: Dimension mismatch"); |
4709
|
2638 return 0; |
4707
|
2639 } |
|
2640 } |
4517
|
2641 |
6384
|
2642 bool rhs_is_scalar = rhs_nr == 1 && rhs_nc == 1; |
|
2643 |
4517
|
2644 idx_vector *tmp = lhs.get_idx (); |
|
2645 |
|
2646 idx_vector idx_i; |
|
2647 idx_vector idx_j; |
|
2648 |
|
2649 if (n_idx > 1) |
|
2650 idx_j = tmp[1]; |
|
2651 |
|
2652 if (n_idx > 0) |
|
2653 idx_i = tmp[0]; |
|
2654 |
|
2655 if (n_idx == 2) |
|
2656 { |
5781
|
2657 octave_idx_type n = idx_i.freeze (lhs_nr, "row", true); |
|
2658 octave_idx_type m = idx_j.freeze (lhs_nc, "column", true); |
4517
|
2659 |
|
2660 int idx_i_is_colon = idx_i.is_colon (); |
|
2661 int idx_j_is_colon = idx_j.is_colon (); |
|
2662 |
6384
|
2663 if (lhs_nr == 0 && lhs_nc == 0) |
|
2664 { |
|
2665 if (idx_i_is_colon) |
|
2666 n = rhs_nr; |
|
2667 |
|
2668 if (idx_j_is_colon) |
|
2669 m = rhs_nc; |
|
2670 } |
4517
|
2671 |
|
2672 if (idx_i && idx_j) |
|
2673 { |
|
2674 if (rhs_nr == 0 && rhs_nc == 0) |
|
2675 { |
|
2676 lhs.maybe_delete_elements (idx_i, idx_j); |
|
2677 } |
|
2678 else |
|
2679 { |
6384
|
2680 if (rhs_is_scalar && n >= 0 && m >= 0) |
4517
|
2681 { |
4534
|
2682 // No need to do anything if either of the indices |
|
2683 // are empty. |
|
2684 |
|
2685 if (n > 0 && m > 0) |
4517
|
2686 { |
6884
|
2687 lhs.make_unique (); |
|
2688 |
4534
|
2689 MAYBE_RESIZE_LHS; |
|
2690 |
5047
|
2691 RT scalar = xrhs.elem (0, 0); |
4534
|
2692 |
5275
|
2693 for (octave_idx_type j = 0; j < m; j++) |
4517
|
2694 { |
5275
|
2695 octave_idx_type jj = idx_j.elem (j); |
|
2696 for (octave_idx_type i = 0; i < n; i++) |
4534
|
2697 { |
5275
|
2698 octave_idx_type ii = idx_i.elem (i); |
6884
|
2699 lhs.xelem (ii, jj) = scalar; |
4534
|
2700 } |
4517
|
2701 } |
|
2702 } |
|
2703 } |
6072
|
2704 else if ((n == 1 || m == 1) |
|
2705 && (rhs_nr == 1 || rhs_nc == 1) |
|
2706 && n * m == rhs_nr * rhs_nc) |
|
2707 { |
6884
|
2708 lhs.make_unique (); |
|
2709 |
6384
|
2710 MAYBE_RESIZE_LHS; |
|
2711 |
6072
|
2712 if (n > 0 && m > 0) |
|
2713 { |
|
2714 octave_idx_type k = 0; |
|
2715 |
|
2716 for (octave_idx_type j = 0; j < m; j++) |
|
2717 { |
|
2718 octave_idx_type jj = idx_j.elem (j); |
|
2719 for (octave_idx_type i = 0; i < n; i++) |
|
2720 { |
|
2721 octave_idx_type ii = idx_i.elem (i); |
6884
|
2722 lhs.xelem (ii, jj) = xrhs.elem (k++); |
6072
|
2723 } |
|
2724 } |
|
2725 } |
|
2726 } |
4517
|
2727 else if (n == rhs_nr && m == rhs_nc) |
|
2728 { |
6884
|
2729 lhs.make_unique (); |
|
2730 |
6384
|
2731 MAYBE_RESIZE_LHS; |
|
2732 |
4517
|
2733 if (n > 0 && m > 0) |
|
2734 { |
5275
|
2735 for (octave_idx_type j = 0; j < m; j++) |
4517
|
2736 { |
5275
|
2737 octave_idx_type jj = idx_j.elem (j); |
|
2738 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2739 { |
5275
|
2740 octave_idx_type ii = idx_i.elem (i); |
6884
|
2741 lhs.xelem (ii, jj) = xrhs.elem (i, j); |
4517
|
2742 } |
|
2743 } |
|
2744 } |
|
2745 } |
|
2746 else if (n == 0 && m == 0) |
|
2747 { |
6384
|
2748 if (! (rhs_is_scalar || (rhs_nr == 0 || rhs_nc == 0))) |
4517
|
2749 { |
|
2750 (*current_liboctave_error_handler) |
|
2751 ("A([], []) = X: X must be an empty matrix or a scalar"); |
|
2752 |
|
2753 retval = 0; |
|
2754 } |
|
2755 } |
|
2756 else |
|
2757 { |
|
2758 (*current_liboctave_error_handler) |
|
2759 ("A(I, J) = X: X must be a scalar or the number of elements in I must"); |
|
2760 (*current_liboctave_error_handler) |
|
2761 ("match the number of rows in X and the number of elements in J must"); |
|
2762 (*current_liboctave_error_handler) |
|
2763 ("match the number of columns in X"); |
|
2764 |
|
2765 retval = 0; |
|
2766 } |
|
2767 } |
|
2768 } |
|
2769 // idx_vector::freeze() printed an error message for us. |
|
2770 } |
|
2771 else if (n_idx == 1) |
|
2772 { |
|
2773 int lhs_is_empty = lhs_nr == 0 || lhs_nc == 0; |
|
2774 |
|
2775 if (lhs_is_empty || (lhs_nr == 1 && lhs_nc == 1)) |
|
2776 { |
5275
|
2777 octave_idx_type lhs_len = lhs.length (); |
|
2778 |
6384
|
2779 idx_i.freeze (lhs_len, 0, true); |
4517
|
2780 |
|
2781 if (idx_i) |
|
2782 { |
|
2783 if (rhs_nr == 0 && rhs_nc == 0) |
|
2784 { |
6384
|
2785 lhs.maybe_delete_elements (idx_i); |
4517
|
2786 } |
|
2787 else |
|
2788 { |
5781
|
2789 if (lhs_is_empty |
|
2790 && idx_i.is_colon () |
|
2791 && ! (rhs_nr == 1 || rhs_nc == 1)) |
4517
|
2792 { |
5781
|
2793 (*current_liboctave_warning_with_id_handler) |
|
2794 ("Octave:fortran-indexing", |
|
2795 "A(:) = X: X is not a vector or scalar"); |
|
2796 } |
|
2797 else |
|
2798 { |
|
2799 octave_idx_type idx_nr = idx_i.orig_rows (); |
|
2800 octave_idx_type idx_nc = idx_i.orig_columns (); |
|
2801 |
|
2802 if (! (rhs_nr == idx_nr && rhs_nc == idx_nc)) |
|
2803 (*current_liboctave_warning_with_id_handler) |
|
2804 ("Octave:fortran-indexing", |
|
2805 "A(I) = X: X does not have same shape as I"); |
4517
|
2806 } |
|
2807 |
5047
|
2808 if (assign1 (lhs, xrhs, rfv)) |
4517
|
2809 { |
5275
|
2810 octave_idx_type len = lhs.length (); |
4517
|
2811 |
|
2812 if (len > 0) |
|
2813 { |
|
2814 // The following behavior is much simplified |
|
2815 // over previous versions of Octave. It |
|
2816 // seems to be compatible with Matlab. |
|
2817 |
|
2818 lhs.dimensions = dim_vector (1, lhs.length ()); |
|
2819 } |
|
2820 } |
|
2821 else |
|
2822 retval = 0; |
|
2823 } |
|
2824 } |
|
2825 // idx_vector::freeze() printed an error message for us. |
|
2826 } |
|
2827 else if (lhs_nr == 1) |
|
2828 { |
5781
|
2829 idx_i.freeze (lhs_nc, "vector", true); |
4517
|
2830 |
|
2831 if (idx_i) |
|
2832 { |
|
2833 if (rhs_nr == 0 && rhs_nc == 0) |
|
2834 lhs.maybe_delete_elements (idx_i); |
|
2835 else |
|
2836 { |
5047
|
2837 if (assign1 (lhs, xrhs, rfv)) |
4517
|
2838 lhs.dimensions = dim_vector (1, lhs.length ()); |
|
2839 else |
|
2840 retval = 0; |
|
2841 } |
|
2842 } |
|
2843 // idx_vector::freeze() printed an error message for us. |
|
2844 } |
|
2845 else if (lhs_nc == 1) |
|
2846 { |
5781
|
2847 idx_i.freeze (lhs_nr, "vector", true); |
4517
|
2848 |
|
2849 if (idx_i) |
|
2850 { |
|
2851 if (rhs_nr == 0 && rhs_nc == 0) |
|
2852 lhs.maybe_delete_elements (idx_i); |
|
2853 else |
|
2854 { |
5047
|
2855 if (assign1 (lhs, xrhs, rfv)) |
4517
|
2856 lhs.dimensions = dim_vector (lhs.length (), 1); |
|
2857 else |
|
2858 retval = 0; |
|
2859 } |
|
2860 } |
|
2861 // idx_vector::freeze() printed an error message for us. |
|
2862 } |
|
2863 else |
|
2864 { |
5781
|
2865 if (! (idx_i.is_colon () |
|
2866 || (idx_i.one_zero_only () |
|
2867 && idx_i.orig_rows () == lhs_nr |
|
2868 && idx_i.orig_columns () == lhs_nc))) |
|
2869 (*current_liboctave_warning_with_id_handler) |
|
2870 ("Octave:fortran-indexing", "single index used for matrix"); |
4517
|
2871 |
5275
|
2872 octave_idx_type len = idx_i.freeze (lhs_nr * lhs_nc, "matrix"); |
4517
|
2873 |
|
2874 if (idx_i) |
|
2875 { |
4756
|
2876 if (rhs_nr == 0 && rhs_nc == 0) |
|
2877 lhs.maybe_delete_elements (idx_i); |
|
2878 else if (len == 0) |
4517
|
2879 { |
6384
|
2880 if (! (rhs_is_scalar || (rhs_nr == 0 || rhs_nc == 0))) |
4517
|
2881 (*current_liboctave_error_handler) |
|
2882 ("A([]) = X: X must be an empty matrix or scalar"); |
|
2883 } |
|
2884 else if (len == rhs_nr * rhs_nc) |
|
2885 { |
6884
|
2886 lhs.make_unique (); |
|
2887 |
|
2888 if (idx_i.is_colon ()) |
4517
|
2889 { |
6884
|
2890 for (octave_idx_type i = 0; i < len; i++) |
|
2891 lhs.xelem (i) = xrhs.elem (i); |
|
2892 } |
|
2893 else |
|
2894 { |
|
2895 for (octave_idx_type i = 0; i < len; i++) |
|
2896 { |
|
2897 octave_idx_type ii = idx_i.elem (i); |
|
2898 lhs.xelem (ii) = xrhs.elem (i); |
|
2899 } |
4517
|
2900 } |
|
2901 } |
6384
|
2902 else if (rhs_is_scalar) |
4517
|
2903 { |
6884
|
2904 lhs.make_unique (); |
|
2905 |
4517
|
2906 RT scalar = rhs.elem (0, 0); |
|
2907 |
6884
|
2908 if (idx_i.is_colon ()) |
4517
|
2909 { |
6884
|
2910 for (octave_idx_type i = 0; i < len; i++) |
|
2911 lhs.xelem (i) = scalar; |
|
2912 } |
|
2913 else |
|
2914 { |
|
2915 for (octave_idx_type i = 0; i < len; i++) |
|
2916 { |
|
2917 octave_idx_type ii = idx_i.elem (i); |
|
2918 lhs.xelem (ii) = scalar; |
|
2919 } |
4517
|
2920 } |
|
2921 } |
|
2922 else |
|
2923 { |
|
2924 (*current_liboctave_error_handler) |
|
2925 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); |
|
2926 |
|
2927 retval = 0; |
|
2928 } |
|
2929 } |
|
2930 // idx_vector::freeze() printed an error message for us. |
|
2931 } |
|
2932 } |
|
2933 else |
|
2934 { |
|
2935 (*current_liboctave_error_handler) |
|
2936 ("invalid number of indices for matrix expression"); |
|
2937 |
|
2938 retval = 0; |
|
2939 } |
|
2940 |
|
2941 lhs.clear_index (); |
|
2942 |
|
2943 return retval; |
|
2944 } |
|
2945 |
|
2946 template <class LT, class RT> |
|
2947 int |
|
2948 assignN (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2949 { |
|
2950 int retval = 1; |
|
2951 |
4746
|
2952 dim_vector rhs_dims = rhs.dims (); |
|
2953 |
5275
|
2954 octave_idx_type rhs_dims_len = rhs_dims.length (); |
4746
|
2955 |
|
2956 bool rhs_is_scalar = is_scalar (rhs_dims); |
|
2957 |
4517
|
2958 int n_idx = lhs.index_count (); |
|
2959 |
4745
|
2960 idx_vector *idx_vex = lhs.get_idx (); |
|
2961 |
|
2962 Array<idx_vector> idx = conv_to_array (idx_vex, n_idx); |
4517
|
2963 |
4743
|
2964 if (rhs_dims_len == 2 && rhs_dims(0) == 0 && rhs_dims(1) == 0) |
4517
|
2965 { |
|
2966 lhs.maybe_delete_elements (idx, rfv); |
|
2967 } |
5285
|
2968 else if (n_idx == 0) |
|
2969 { |
|
2970 (*current_liboctave_error_handler) |
|
2971 ("invalid number of indices for matrix expression"); |
|
2972 |
|
2973 retval = 0; |
|
2974 } |
4657
|
2975 else if (n_idx == 1) |
4517
|
2976 { |
4657
|
2977 idx_vector iidx = idx(0); |
6884
|
2978 int iidx_is_colon = iidx.is_colon (); |
|
2979 |
|
2980 if (! (iidx_is_colon |
5781
|
2981 || (iidx.one_zero_only () |
|
2982 && iidx.orig_dimensions () == lhs.dims ()))) |
|
2983 (*current_liboctave_warning_with_id_handler) |
|
2984 ("Octave:fortran-indexing", "single index used for N-d array"); |
4657
|
2985 |
5275
|
2986 octave_idx_type lhs_len = lhs.length (); |
|
2987 |
|
2988 octave_idx_type len = iidx.freeze (lhs_len, "N-d arrray"); |
4657
|
2989 |
|
2990 if (iidx) |
4533
|
2991 { |
4657
|
2992 if (len == 0) |
4656
|
2993 { |
5039
|
2994 if (! (rhs_dims.all_ones () || rhs_dims.any_zero ())) |
4743
|
2995 { |
|
2996 (*current_liboctave_error_handler) |
|
2997 ("A([]) = X: X must be an empty matrix or scalar"); |
|
2998 |
|
2999 retval = 0; |
|
3000 } |
4657
|
3001 } |
|
3002 else if (len == rhs.length ()) |
|
3003 { |
6884
|
3004 lhs.make_unique (); |
|
3005 |
|
3006 if (iidx_is_colon) |
4656
|
3007 { |
6884
|
3008 for (octave_idx_type i = 0; i < len; i++) |
|
3009 lhs.xelem (i) = rhs.elem (i); |
|
3010 } |
|
3011 else |
|
3012 { |
|
3013 for (octave_idx_type i = 0; i < len; i++) |
|
3014 { |
|
3015 octave_idx_type ii = iidx.elem (i); |
|
3016 |
|
3017 lhs.xelem (ii) = rhs.elem (i); |
|
3018 } |
4656
|
3019 } |
|
3020 } |
4716
|
3021 else if (rhs_is_scalar) |
4657
|
3022 { |
|
3023 RT scalar = rhs.elem (0); |
|
3024 |
6884
|
3025 lhs.make_unique (); |
|
3026 |
|
3027 if (iidx_is_colon) |
4657
|
3028 { |
6884
|
3029 for (octave_idx_type i = 0; i < len; i++) |
|
3030 lhs.xelem (i) = scalar; |
|
3031 } |
|
3032 else |
|
3033 { |
|
3034 for (octave_idx_type i = 0; i < len; i++) |
|
3035 { |
|
3036 octave_idx_type ii = iidx.elem (i); |
|
3037 |
|
3038 lhs.xelem (ii) = scalar; |
|
3039 } |
4657
|
3040 } |
|
3041 } |
|
3042 else |
|
3043 { |
|
3044 (*current_liboctave_error_handler) |
4702
|
3045 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); |
|
3046 |
4657
|
3047 retval = 0; |
|
3048 } |
|
3049 |
4656
|
3050 // idx_vector::freeze() printed an error message for us. |
4533
|
3051 } |
4702
|
3052 } |
4743
|
3053 else |
4702
|
3054 { |
4746
|
3055 // Maybe expand to more dimensions. |
|
3056 |
|
3057 dim_vector lhs_dims = lhs.dims (); |
|
3058 |
5275
|
3059 octave_idx_type lhs_dims_len = lhs_dims.length (); |
4746
|
3060 |
|
3061 dim_vector final_lhs_dims = lhs_dims; |
|
3062 |
|
3063 dim_vector frozen_len; |
|
3064 |
5275
|
3065 octave_idx_type orig_lhs_dims_len = lhs_dims_len; |
4747
|
3066 |
|
3067 bool orig_empty = lhs_dims.all_zero (); |
|
3068 |
|
3069 if (n_idx < lhs_dims_len) |
4517
|
3070 { |
5052
|
3071 // Collapse dimensions beyond last index. Note that we |
|
3072 // delay resizing LHS until we know that the assignment will |
|
3073 // succeed. |
4747
|
3074 |
5781
|
3075 if (! (idx(n_idx-1).is_colon ())) |
|
3076 (*current_liboctave_warning_with_id_handler) |
|
3077 ("Octave:fortran-indexing", |
|
3078 "fewer indices than dimensions for N-d array"); |
4747
|
3079 |
|
3080 for (int i = n_idx; i < lhs_dims_len; i++) |
|
3081 lhs_dims(n_idx-1) *= lhs_dims(i); |
|
3082 |
|
3083 lhs_dims.resize (n_idx); |
|
3084 |
|
3085 lhs_dims_len = lhs_dims.length (); |
|
3086 } |
|
3087 |
|
3088 // Resize. |
|
3089 |
|
3090 dim_vector new_dims; |
|
3091 new_dims.resize (n_idx); |
|
3092 |
5264
|
3093 if (orig_empty) |
4747
|
3094 { |
5264
|
3095 int k = 0; |
|
3096 for (int i = 0; i < n_idx; i++) |
4746
|
3097 { |
4747
|
3098 // If index is a colon, resizing to RHS dimensions is |
|
3099 // allowed because we started out empty. |
4746
|
3100 |
5264
|
3101 if (idx(i).is_colon ()) |
|
3102 { |
|
3103 if (k < rhs_dims.length ()) |
|
3104 new_dims(i) = rhs_dims(k++); |
|
3105 else |
5379
|
3106 new_dims(i) = 1; |
|
3107 } |
|
3108 else |
|
3109 { |
|
3110 octave_idx_type nelem = idx(i).capacity (); |
|
3111 |
|
3112 if (nelem >= 1 |
6388
|
3113 && ((k < rhs_dims.length () && nelem == rhs_dims(k)) |
|
3114 || rhs_is_scalar)) |
5379
|
3115 k++; |
6388
|
3116 else if (! (nelem == 1 || rhs_is_scalar)) |
5264
|
3117 { |
|
3118 (*current_liboctave_error_handler) |
5379
|
3119 ("A(IDX-LIST) = RHS: mismatched index and RHS dimension"); |
5264
|
3120 return retval; |
|
3121 } |
5379
|
3122 |
6388
|
3123 new_dims(i) = idx(i).orig_empty () ? 0 : idx(i).max () + 1; |
5264
|
3124 } |
4746
|
3125 } |
5264
|
3126 } |
|
3127 else |
|
3128 { |
|
3129 for (int i = 0; i < n_idx; i++) |
4746
|
3130 { |
4747
|
3131 // We didn't start out with all zero dimensions, so if |
|
3132 // index is a colon, it refers to the current LHS |
|
3133 // dimension. Otherwise, it is OK to enlarge to a |
5264
|
3134 // dimension given by the largest index, but if that |
4898
|
3135 // index is a colon the new dimension is singleton. |
4749
|
3136 |
|
3137 if (i < lhs_dims_len |
6481
|
3138 && (idx(i).is_colon () |
|
3139 || idx(i).orig_empty () |
|
3140 || idx(i).max () < lhs_dims(i))) |
4749
|
3141 new_dims(i) = lhs_dims(i); |
|
3142 else if (! idx(i).is_colon ()) |
|
3143 new_dims(i) = idx(i).max () + 1; |
|
3144 else |
4898
|
3145 new_dims(i) = 1; |
4745
|
3146 } |
4747
|
3147 } |
|
3148 |
4749
|
3149 if (retval != 0) |
4747
|
3150 { |
4749
|
3151 if (! orig_empty |
|
3152 && n_idx < orig_lhs_dims_len |
|
3153 && new_dims(n_idx-1) != lhs_dims(n_idx-1)) |
4702
|
3154 { |
4749
|
3155 // We reshaped and the last dimension changed. This has to |
|
3156 // be an error, because we don't know how to undo that |
|
3157 // later... |
|
3158 |
|
3159 (*current_liboctave_error_handler) |
|
3160 ("array index %d (= %d) for assignment requires invalid resizing operation", |
|
3161 n_idx, new_dims(n_idx-1)); |
|
3162 |
|
3163 retval = 0; |
4743
|
3164 } |
|
3165 else |
|
3166 { |
5052
|
3167 // Determine final dimensions for LHS and reset the |
|
3168 // current size of the LHS. Note that we delay actually |
|
3169 // resizing LHS until we know that the assignment will |
|
3170 // succeed. |
|
3171 |
4749
|
3172 if (n_idx < orig_lhs_dims_len) |
4743
|
3173 { |
4749
|
3174 for (int i = 0; i < n_idx-1; i++) |
|
3175 final_lhs_dims(i) = new_dims(i); |
4747
|
3176 } |
|
3177 else |
4749
|
3178 final_lhs_dims = new_dims; |
|
3179 |
5837
|
3180 lhs_dims_len = new_dims.length (); |
|
3181 |
|
3182 frozen_len = freeze (idx, new_dims, true); |
4749
|
3183 |
6141
|
3184 for (int i = 0; i < idx.length (); i++) |
|
3185 { |
|
3186 if (! idx(i)) |
|
3187 { |
|
3188 retval = 0; |
|
3189 lhs.clear_index (); |
|
3190 return retval; |
|
3191 } |
|
3192 } |
|
3193 |
4749
|
3194 if (rhs_is_scalar) |
4747
|
3195 { |
6884
|
3196 lhs.make_unique (); |
|
3197 |
5837
|
3198 if (n_idx < orig_lhs_dims_len) |
|
3199 lhs = lhs.reshape (lhs_dims); |
|
3200 |
5052
|
3201 lhs.resize_and_fill (new_dims, rfv); |
|
3202 |
4747
|
3203 if (! final_lhs_dims.any_zero ()) |
|
3204 { |
4749
|
3205 RT scalar = rhs.elem (0); |
|
3206 |
6388
|
3207 if (n_idx == 1) |
|
3208 { |
|
3209 idx_vector iidx = idx(0); |
|
3210 |
|
3211 octave_idx_type len = frozen_len(0); |
|
3212 |
6884
|
3213 if (iidx.is_colon ()) |
|
3214 { |
|
3215 for (octave_idx_type i = 0; i < len; i++) |
|
3216 lhs.xelem (i) = scalar; |
|
3217 } |
|
3218 else |
6388
|
3219 { |
6884
|
3220 for (octave_idx_type i = 0; i < len; i++) |
|
3221 { |
|
3222 octave_idx_type ii = iidx.elem (i); |
|
3223 |
|
3224 lhs.xelem (ii) = scalar; |
|
3225 } |
6388
|
3226 } |
|
3227 } |
|
3228 else if (lhs_dims_len == 2 && n_idx == 2) |
4747
|
3229 { |
6388
|
3230 idx_vector idx_i = idx(0); |
|
3231 idx_vector idx_j = idx(1); |
|
3232 |
|
3233 octave_idx_type i_len = frozen_len(0); |
|
3234 octave_idx_type j_len = frozen_len(1); |
|
3235 |
6884
|
3236 if (idx_i.is_colon()) |
6388
|
3237 { |
6884
|
3238 for (octave_idx_type j = 0; j < j_len; j++) |
6388
|
3239 { |
6884
|
3240 octave_idx_type off = new_dims (0) * |
|
3241 idx_j.elem (j); |
|
3242 for (octave_idx_type i = 0; i < i_len; i++) |
|
3243 lhs.xelem (i + off) = scalar; |
|
3244 } |
|
3245 } |
|
3246 else |
|
3247 { |
|
3248 for (octave_idx_type j = 0; j < j_len; j++) |
|
3249 { |
|
3250 octave_idx_type off = new_dims (0) * |
|
3251 idx_j.elem (j); |
|
3252 for (octave_idx_type i = 0; i < i_len; i++) |
|
3253 { |
|
3254 octave_idx_type ii = idx_i.elem (i); |
|
3255 lhs.xelem (ii + off) = scalar; |
|
3256 } |
6388
|
3257 } |
|
3258 } |
|
3259 } |
|
3260 else |
|
3261 { |
|
3262 octave_idx_type n = Array<LT>::get_size (frozen_len); |
|
3263 |
|
3264 Array<octave_idx_type> result_idx (lhs_dims_len, 0); |
|
3265 |
|
3266 for (octave_idx_type i = 0; i < n; i++) |
|
3267 { |
|
3268 Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx); |
|
3269 |
6884
|
3270 lhs.xelem (elt_idx) = scalar; |
6388
|
3271 |
|
3272 increment_index (result_idx, frozen_len); |
|
3273 } |
4747
|
3274 } |
|
3275 } |
4743
|
3276 } |
4749
|
3277 else |
|
3278 { |
|
3279 // RHS is matrix or higher dimension. |
|
3280 |
5275
|
3281 octave_idx_type n = Array<LT>::get_size (frozen_len); |
5264
|
3282 |
|
3283 if (n != rhs.numel ()) |
4749
|
3284 { |
|
3285 (*current_liboctave_error_handler) |
|
3286 ("A(IDX-LIST) = X: X must be a scalar or size of X must equal number of elements indexed by IDX-LIST"); |
|
3287 |
|
3288 retval = 0; |
|
3289 } |
|
3290 else |
|
3291 { |
6884
|
3292 lhs.make_unique (); |
|
3293 |
5837
|
3294 if (n_idx < orig_lhs_dims_len) |
|
3295 lhs = lhs.reshape (lhs_dims); |
|
3296 |
5052
|
3297 lhs.resize_and_fill (new_dims, rfv); |
|
3298 |
4749
|
3299 if (! final_lhs_dims.any_zero ()) |
|
3300 { |
6388
|
3301 if (n_idx == 1) |
|
3302 { |
|
3303 idx_vector iidx = idx(0); |
|
3304 |
|
3305 octave_idx_type len = frozen_len(0); |
|
3306 |
6884
|
3307 if (iidx.is_colon ()) |
|
3308 { |
|
3309 for (octave_idx_type i = 0; i < len; i++) |
|
3310 lhs.xelem (i) = rhs.elem (i); |
|
3311 } |
|
3312 else |
6388
|
3313 { |
6884
|
3314 for (octave_idx_type i = 0; i < len; i++) |
|
3315 { |
|
3316 octave_idx_type ii = iidx.elem (i); |
|
3317 |
|
3318 lhs.xelem (ii) = rhs.elem (i); |
|
3319 } |
6388
|
3320 } |
|
3321 } |
|
3322 else if (lhs_dims_len == 2 && n_idx == 2) |
4749
|
3323 { |
6388
|
3324 idx_vector idx_i = idx(0); |
|
3325 idx_vector idx_j = idx(1); |
|
3326 |
|
3327 octave_idx_type i_len = frozen_len(0); |
|
3328 octave_idx_type j_len = frozen_len(1); |
|
3329 octave_idx_type k = 0; |
|
3330 |
6884
|
3331 if (idx_i.is_colon()) |
6388
|
3332 { |
6884
|
3333 for (octave_idx_type j = 0; j < j_len; j++) |
6388
|
3334 { |
6884
|
3335 octave_idx_type off = new_dims (0) * |
|
3336 idx_j.elem (j); |
|
3337 for (octave_idx_type i = 0; |
|
3338 i < i_len; i++) |
|
3339 lhs.xelem (i + off) = rhs.elem (k++); |
6388
|
3340 } |
|
3341 } |
6884
|
3342 else |
|
3343 { |
|
3344 for (octave_idx_type j = 0; j < j_len; j++) |
|
3345 { |
|
3346 octave_idx_type off = new_dims (0) * |
|
3347 idx_j.elem (j); |
|
3348 for (octave_idx_type i = 0; i < i_len; i++) |
|
3349 { |
|
3350 octave_idx_type ii = idx_i.elem (i); |
|
3351 lhs.xelem (ii + off) = rhs.elem (k++); |
|
3352 } |
|
3353 } |
|
3354 } |
|
3355 |
6388
|
3356 } |
|
3357 else |
|
3358 { |
|
3359 n = Array<LT>::get_size (frozen_len); |
|
3360 |
|
3361 Array<octave_idx_type> result_idx (lhs_dims_len, 0); |
|
3362 |
|
3363 for (octave_idx_type i = 0; i < n; i++) |
|
3364 { |
|
3365 Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx); |
|
3366 |
6884
|
3367 lhs.xelem (elt_idx) = rhs.elem (i); |
6388
|
3368 |
|
3369 increment_index (result_idx, frozen_len); |
|
3370 } |
4749
|
3371 } |
|
3372 } |
|
3373 } |
|
3374 } |
4743
|
3375 } |
4517
|
3376 } |
4745
|
3377 |
5632
|
3378 lhs.clear_index (); |
|
3379 |
5052
|
3380 if (retval != 0) |
5516
|
3381 lhs = lhs.reshape (final_lhs_dims); |
4517
|
3382 } |
|
3383 |
5052
|
3384 if (retval != 0) |
|
3385 lhs.chop_trailing_singletons (); |
4757
|
3386 |
4517
|
3387 lhs.clear_index (); |
|
3388 |
|
3389 return retval; |
|
3390 } |
|
3391 |
|
3392 template <class T> |
|
3393 void |
3933
|
3394 Array<T>::print_info (std::ostream& os, const std::string& prefix) const |
|
3395 { |
|
3396 os << prefix << "rep address: " << rep << "\n" |
|
3397 << prefix << "rep->len: " << rep->len << "\n" |
|
3398 << prefix << "rep->data: " << static_cast<void *> (rep->data) << "\n" |
|
3399 << prefix << "rep->count: " << rep->count << "\n"; |
4513
|
3400 |
|
3401 // 2D info: |
|
3402 // |
4657
|
3403 // << pefix << "rows: " << rows () << "\n" |
4513
|
3404 // << prefix << "cols: " << cols () << "\n"; |
3933
|
3405 } |
|
3406 |
237
|
3407 /* |
|
3408 ;;; Local Variables: *** |
|
3409 ;;; mode: C++ *** |
|
3410 ;;; End: *** |
|
3411 */ |