4513
|
1 // N-D Array manipulations. |
4511
|
2 /* |
|
3 |
|
4 Copyright (C) 1996, 1997 John W. Eaton |
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
|
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
|
21 |
|
22 */ |
|
23 |
|
24 #ifdef HAVE_CONFIG_H |
|
25 #include <config.h> |
|
26 #endif |
|
27 |
4634
|
28 #include <cfloat> |
4780
|
29 #include <vector> |
4634
|
30 |
4588
|
31 #include "Array-util.h" |
4513
|
32 #include "dNDArray.h" |
4511
|
33 #include "mx-base.h" |
4773
|
34 #include "f77-fcn.h" |
4513
|
35 #include "lo-error.h" |
4511
|
36 #include "lo-ieee.h" |
4634
|
37 #include "lo-mappers.h" |
4511
|
38 |
4773
|
39 #if defined (HAVE_FFTW3) |
|
40 #include "oct-fftw.h" |
|
41 |
|
42 ComplexNDArray |
|
43 NDArray::fourier (int dim) const |
|
44 { |
|
45 dim_vector dv = dims (); |
|
46 |
|
47 if (dim > dv.length () || dim < 0) |
|
48 return ComplexNDArray (); |
|
49 |
|
50 int stride = 1; |
|
51 int n = dv(dim); |
|
52 |
|
53 for (int i = 0; i < dim; i++) |
|
54 stride *= dv(i); |
|
55 |
|
56 int howmany = numel () / dv (dim); |
|
57 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
58 int nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
59 int dist = (stride == 1 ? n : 1); |
|
60 |
|
61 const double *in (fortran_vec ()); |
|
62 ComplexNDArray retval (dv); |
|
63 Complex *out (retval.fortran_vec ()); |
|
64 |
|
65 // Need to be careful here about the distance between fft's |
|
66 for (int k = 0; k < nloop; k++) |
|
67 octave_fftw::fft (in + k * stride * n, out + k * stride * n, |
|
68 n, howmany, stride, dist); |
|
69 |
|
70 return retval; |
|
71 } |
|
72 |
|
73 ComplexNDArray |
4816
|
74 NDArray::ifourier (int dim) const |
4773
|
75 { |
|
76 dim_vector dv = dims (); |
|
77 |
|
78 if (dim > dv.length () || dim < 0) |
|
79 return ComplexNDArray (); |
|
80 |
|
81 int stride = 1; |
|
82 int n = dv(dim); |
|
83 |
|
84 for (int i = 0; i < dim; i++) |
|
85 stride *= dv(i); |
|
86 |
|
87 int howmany = numel () / dv (dim); |
|
88 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
89 int nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
90 int dist = (stride == 1 ? n : 1); |
|
91 |
|
92 ComplexNDArray retval (*this); |
|
93 Complex *out (retval.fortran_vec ()); |
|
94 |
|
95 // Need to be careful here about the distance between fft's |
|
96 for (int k = 0; k < nloop; k++) |
|
97 octave_fftw::ifft (out + k * stride * n, out + k * stride * n, |
|
98 n, howmany, stride, dist); |
|
99 |
|
100 return retval; |
|
101 } |
|
102 |
|
103 ComplexNDArray |
|
104 NDArray::fourier2d (void) const |
|
105 { |
|
106 dim_vector dv = dims(); |
|
107 if (dv.length () < 2) |
|
108 return ComplexNDArray (); |
|
109 |
|
110 dim_vector dv2(dv(0), dv(1)); |
|
111 const double *in = fortran_vec (); |
|
112 ComplexNDArray retval (dv); |
|
113 Complex *out = retval.fortran_vec (); |
|
114 int howmany = numel() / dv(0) / dv(1); |
|
115 int dist = dv(0) * dv(1); |
|
116 |
|
117 for (int i=0; i < howmany; i++) |
|
118 octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); |
|
119 |
|
120 return retval; |
|
121 } |
|
122 |
|
123 ComplexNDArray |
|
124 NDArray::ifourier2d (void) const |
|
125 { |
|
126 dim_vector dv = dims(); |
|
127 if (dv.length () < 2) |
|
128 return ComplexNDArray (); |
|
129 |
|
130 dim_vector dv2(dv(0), dv(1)); |
|
131 ComplexNDArray retval (*this); |
|
132 Complex *out = retval.fortran_vec (); |
|
133 int howmany = numel() / dv(0) / dv(1); |
|
134 int dist = dv(0) * dv(1); |
|
135 |
|
136 for (int i=0; i < howmany; i++) |
|
137 octave_fftw::ifftNd (out + i*dist, out + i*dist, 2, dv2); |
|
138 |
|
139 return retval; |
|
140 } |
|
141 |
|
142 ComplexNDArray |
|
143 NDArray::fourierNd (void) const |
|
144 { |
|
145 dim_vector dv = dims (); |
|
146 int rank = dv.length (); |
|
147 |
|
148 const double *in (fortran_vec ()); |
|
149 ComplexNDArray retval (dv); |
|
150 Complex *out (retval.fortran_vec ()); |
|
151 |
|
152 octave_fftw::fftNd (in, out, rank, dv); |
|
153 |
|
154 return retval; |
|
155 } |
|
156 |
|
157 ComplexNDArray |
|
158 NDArray::ifourierNd (void) const |
|
159 { |
|
160 dim_vector dv = dims (); |
|
161 int rank = dv.length (); |
|
162 |
|
163 ComplexNDArray tmp (*this); |
|
164 Complex *in (tmp.fortran_vec ()); |
|
165 ComplexNDArray retval (dv); |
|
166 Complex *out (retval.fortran_vec ()); |
|
167 |
|
168 octave_fftw::ifftNd (in, out, rank, dv); |
|
169 |
|
170 return retval; |
|
171 } |
|
172 |
|
173 #else |
|
174 |
|
175 extern "C" |
|
176 { |
|
177 // Note that the original complex fft routines were not written for |
|
178 // double complex arguments. They have been modified by adding an |
|
179 // implicit double precision (a-h,o-z) statement at the beginning of |
|
180 // each subroutine. |
|
181 |
|
182 F77_RET_T |
|
183 F77_FUNC (cffti, CFFTI) (const int&, Complex*); |
|
184 |
|
185 F77_RET_T |
|
186 F77_FUNC (cfftf, CFFTF) (const int&, Complex*, Complex*); |
|
187 |
|
188 F77_RET_T |
|
189 F77_FUNC (cfftb, CFFTB) (const int&, Complex*, Complex*); |
|
190 } |
|
191 |
|
192 ComplexNDArray |
|
193 NDArray::fourier (int dim) const |
|
194 { |
|
195 dim_vector dv = dims (); |
|
196 |
|
197 if (dim > dv.length () || dim < 0) |
|
198 return ComplexNDArray (); |
|
199 |
|
200 ComplexNDArray retval (dv); |
|
201 int npts = dv(dim); |
|
202 int nn = 4*npts+15; |
|
203 Array<Complex> wsave (nn); |
|
204 Complex *pwsave = wsave.fortran_vec (); |
|
205 |
|
206 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
207 |
|
208 int stride = 1; |
|
209 |
|
210 for (int i = 0; i < dim; i++) |
|
211 stride *= dv(i); |
|
212 |
|
213 int howmany = numel () / npts; |
|
214 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
215 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
216 int dist = (stride == 1 ? npts : 1); |
|
217 |
|
218 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
219 |
|
220 for (int k = 0; k < nloop; k++) |
|
221 { |
|
222 for (int j = 0; j < howmany; j++) |
|
223 { |
|
224 OCTAVE_QUIT; |
|
225 |
|
226 for (int i = 0; i < npts; i++) |
|
227 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
228 |
|
229 F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); |
|
230 |
|
231 for (int i = 0; i < npts; i++) |
|
232 retval ((i + k*npts)*stride + j*dist) = tmp[i]; |
|
233 } |
|
234 } |
|
235 |
|
236 return retval; |
|
237 } |
|
238 |
|
239 ComplexNDArray |
|
240 NDArray::ifourier (int dim) const |
|
241 { |
|
242 dim_vector dv = dims (); |
|
243 |
|
244 if (dim > dv.length () || dim < 0) |
|
245 return ComplexNDArray (); |
|
246 |
|
247 ComplexNDArray retval (dv); |
|
248 int npts = dv(dim); |
|
249 int nn = 4*npts+15; |
|
250 Array<Complex> wsave (nn); |
|
251 Complex *pwsave = wsave.fortran_vec (); |
|
252 |
|
253 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
254 |
|
255 int stride = 1; |
|
256 |
|
257 for (int i = 0; i < dim; i++) |
|
258 stride *= dv(i); |
|
259 |
|
260 int howmany = numel () / npts; |
|
261 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
262 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
263 int dist = (stride == 1 ? npts : 1); |
|
264 |
|
265 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
266 |
|
267 for (int k = 0; k < nloop; k++) |
|
268 { |
|
269 for (int j = 0; j < howmany; j++) |
|
270 { |
|
271 OCTAVE_QUIT; |
|
272 |
|
273 for (int i = 0; i < npts; i++) |
|
274 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
275 |
|
276 F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); |
|
277 |
|
278 for (int i = 0; i < npts; i++) |
|
279 retval ((i + k*npts)*stride + j*dist) = tmp[i] / |
|
280 static_cast<double> (npts); |
|
281 } |
|
282 } |
|
283 |
|
284 return retval; |
|
285 } |
|
286 |
|
287 ComplexNDArray |
|
288 NDArray::fourier2d (void) const |
|
289 { |
|
290 dim_vector dv = dims(); |
|
291 dim_vector dv2 (dv(0), dv(1)); |
|
292 int rank = 2; |
|
293 ComplexNDArray retval (*this); |
|
294 int stride = 1; |
|
295 |
|
296 for (int i = 0; i < rank; i++) |
|
297 { |
|
298 int npts = dv2(i); |
|
299 int nn = 4*npts+15; |
|
300 Array<Complex> wsave (nn); |
|
301 Complex *pwsave = wsave.fortran_vec (); |
|
302 Array<Complex> row (npts); |
|
303 Complex *prow = row.fortran_vec (); |
|
304 |
|
305 int howmany = numel () / npts; |
|
306 howmany = (stride == 1 ? howmany : |
|
307 (howmany > stride ? stride : howmany)); |
|
308 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
309 int dist = (stride == 1 ? npts : 1); |
|
310 |
|
311 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
312 |
|
313 for (int k = 0; k < nloop; k++) |
|
314 { |
|
315 for (int j = 0; j < howmany; j++) |
|
316 { |
|
317 OCTAVE_QUIT; |
|
318 |
|
319 for (int l = 0; l < npts; l++) |
|
320 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
321 |
|
322 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
323 |
|
324 for (int l = 0; l < npts; l++) |
|
325 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
326 } |
|
327 } |
|
328 |
|
329 stride *= dv2(i); |
|
330 } |
|
331 |
|
332 return retval; |
|
333 } |
|
334 |
|
335 ComplexNDArray |
|
336 NDArray::ifourier2d (void) const |
|
337 { |
|
338 dim_vector dv = dims(); |
|
339 dim_vector dv2 (dv(0), dv(1)); |
|
340 int rank = 2; |
|
341 ComplexNDArray retval (*this); |
|
342 int stride = 1; |
|
343 |
|
344 for (int i = 0; i < rank; i++) |
|
345 { |
|
346 int npts = dv2(i); |
|
347 int nn = 4*npts+15; |
|
348 Array<Complex> wsave (nn); |
|
349 Complex *pwsave = wsave.fortran_vec (); |
|
350 Array<Complex> row (npts); |
|
351 Complex *prow = row.fortran_vec (); |
|
352 |
|
353 int howmany = numel () / npts; |
|
354 howmany = (stride == 1 ? howmany : |
|
355 (howmany > stride ? stride : howmany)); |
|
356 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
357 int dist = (stride == 1 ? npts : 1); |
|
358 |
|
359 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
360 |
|
361 for (int k = 0; k < nloop; k++) |
|
362 { |
|
363 for (int j = 0; j < howmany; j++) |
|
364 { |
|
365 OCTAVE_QUIT; |
|
366 |
|
367 for (int l = 0; l < npts; l++) |
|
368 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
369 |
|
370 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
371 |
|
372 for (int l = 0; l < npts; l++) |
|
373 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
374 static_cast<double> (npts); |
|
375 } |
|
376 } |
|
377 |
|
378 stride *= dv2(i); |
|
379 } |
|
380 |
|
381 return retval; |
|
382 } |
|
383 |
|
384 ComplexNDArray |
|
385 NDArray::fourierNd (void) const |
|
386 { |
|
387 dim_vector dv = dims (); |
|
388 int rank = dv.length (); |
|
389 ComplexNDArray retval (*this); |
|
390 int stride = 1; |
|
391 |
|
392 for (int i = 0; i < rank; i++) |
|
393 { |
|
394 int npts = dv(i); |
|
395 int nn = 4*npts+15; |
|
396 Array<Complex> wsave (nn); |
|
397 Complex *pwsave = wsave.fortran_vec (); |
|
398 Array<Complex> row (npts); |
|
399 Complex *prow = row.fortran_vec (); |
|
400 |
|
401 int howmany = numel () / npts; |
|
402 howmany = (stride == 1 ? howmany : |
|
403 (howmany > stride ? stride : howmany)); |
|
404 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
405 int dist = (stride == 1 ? npts : 1); |
|
406 |
|
407 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
408 |
|
409 for (int k = 0; k < nloop; k++) |
|
410 { |
|
411 for (int j = 0; j < howmany; j++) |
|
412 { |
|
413 OCTAVE_QUIT; |
|
414 |
|
415 for (int l = 0; l < npts; l++) |
|
416 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
417 |
|
418 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
419 |
|
420 for (int l = 0; l < npts; l++) |
|
421 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
422 } |
|
423 } |
|
424 |
|
425 stride *= dv(i); |
|
426 } |
|
427 |
|
428 return retval; |
|
429 } |
|
430 |
|
431 ComplexNDArray |
|
432 NDArray::ifourierNd (void) const |
|
433 { |
|
434 dim_vector dv = dims (); |
|
435 int rank = dv.length (); |
|
436 ComplexNDArray retval (*this); |
|
437 int stride = 1; |
|
438 |
|
439 for (int i = 0; i < rank; i++) |
|
440 { |
|
441 int npts = dv(i); |
|
442 int nn = 4*npts+15; |
|
443 Array<Complex> wsave (nn); |
|
444 Complex *pwsave = wsave.fortran_vec (); |
|
445 Array<Complex> row (npts); |
|
446 Complex *prow = row.fortran_vec (); |
|
447 |
|
448 int howmany = numel () / npts; |
|
449 howmany = (stride == 1 ? howmany : |
|
450 (howmany > stride ? stride : howmany)); |
|
451 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
452 int dist = (stride == 1 ? npts : 1); |
|
453 |
|
454 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
455 |
|
456 for (int k = 0; k < nloop; k++) |
|
457 { |
|
458 for (int j = 0; j < howmany; j++) |
|
459 { |
|
460 OCTAVE_QUIT; |
|
461 |
|
462 for (int l = 0; l < npts; l++) |
|
463 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
464 |
|
465 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
466 |
|
467 for (int l = 0; l < npts; l++) |
|
468 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
469 static_cast<double> (npts); |
|
470 } |
|
471 } |
|
472 |
|
473 stride *= dv(i); |
|
474 } |
|
475 |
|
476 return retval; |
|
477 } |
|
478 |
|
479 #endif |
|
480 |
4543
|
481 // unary operations |
|
482 |
|
483 boolNDArray |
|
484 NDArray::operator ! (void) const |
|
485 { |
|
486 boolNDArray b (dims ()); |
|
487 |
|
488 for (int i = 0; i < length (); i++) |
|
489 b.elem (i) = ! elem (i); |
|
490 |
|
491 return b; |
|
492 } |
|
493 |
4634
|
494 bool |
|
495 NDArray::any_element_is_negative (bool neg_zero) const |
|
496 { |
|
497 int nel = nelem (); |
|
498 |
|
499 if (neg_zero) |
|
500 { |
|
501 for (int i = 0; i < nel; i++) |
|
502 if (lo_ieee_signbit (elem (i))) |
|
503 return true; |
|
504 } |
|
505 else |
|
506 { |
|
507 for (int i = 0; i < nel; i++) |
|
508 if (elem (i) < 0) |
|
509 return true; |
|
510 } |
|
511 |
|
512 return false; |
|
513 } |
|
514 |
|
515 |
|
516 bool |
|
517 NDArray::any_element_is_inf_or_nan (void) const |
|
518 { |
|
519 int nel = nelem (); |
|
520 |
|
521 for (int i = 0; i < nel; i++) |
|
522 { |
|
523 double val = elem (i); |
|
524 if (xisinf (val) || xisnan (val)) |
|
525 return true; |
|
526 } |
|
527 |
|
528 return false; |
|
529 } |
|
530 |
|
531 bool |
|
532 NDArray::all_elements_are_int_or_inf_or_nan (void) const |
|
533 { |
|
534 int nel = nelem (); |
|
535 |
|
536 for (int i = 0; i < nel; i++) |
|
537 { |
|
538 double val = elem (i); |
|
539 if (xisnan (val) || D_NINT (val) == val) |
|
540 continue; |
|
541 else |
|
542 return false; |
|
543 } |
|
544 |
|
545 return true; |
|
546 } |
|
547 |
|
548 // Return nonzero if any element of M is not an integer. Also extract |
|
549 // the largest and smallest values and return them in MAX_VAL and MIN_VAL. |
|
550 |
|
551 bool |
|
552 NDArray::all_integers (double& max_val, double& min_val) const |
|
553 { |
|
554 int nel = nelem (); |
|
555 |
|
556 if (nel > 0) |
|
557 { |
|
558 max_val = elem (0); |
|
559 min_val = elem (0); |
|
560 } |
|
561 else |
|
562 return false; |
|
563 |
|
564 for (int i = 0; i < nel; i++) |
|
565 { |
|
566 double val = elem (i); |
|
567 |
|
568 if (val > max_val) |
|
569 max_val = val; |
|
570 |
|
571 if (val < min_val) |
|
572 min_val = val; |
|
573 |
|
574 if (D_NINT (val) != val) |
|
575 return false; |
|
576 } |
|
577 |
|
578 return true; |
|
579 } |
|
580 |
|
581 bool |
|
582 NDArray::too_large_for_float (void) const |
|
583 { |
|
584 int nel = nelem (); |
|
585 |
|
586 for (int i = 0; i < nel; i++) |
|
587 { |
|
588 double val = elem (i); |
|
589 |
|
590 if (val > FLT_MAX || val < FLT_MIN) |
|
591 return true; |
|
592 } |
|
593 |
|
594 return false; |
|
595 } |
|
596 |
4513
|
597 // XXX FIXME XXX -- this is not quite the right thing. |
|
598 |
4556
|
599 boolNDArray |
4513
|
600 NDArray::all (int dim) const |
|
601 { |
4569
|
602 MX_ND_ANY_ALL_REDUCTION (MX_ND_ALL_EVAL (MX_ND_ALL_EXPR), true); |
4513
|
603 } |
|
604 |
4556
|
605 boolNDArray |
4513
|
606 NDArray::any (int dim) const |
|
607 { |
4569
|
608 MX_ND_ANY_ALL_REDUCTION (MX_ND_ANY_EVAL (MX_ND_ANY_EXPR), false); |
|
609 } |
|
610 |
4584
|
611 NDArray |
4569
|
612 NDArray::cumprod (int dim) const |
|
613 { |
4584
|
614 MX_ND_CUMULATIVE_OP (NDArray, double, 1, *); |
4569
|
615 } |
|
616 |
4584
|
617 NDArray |
4569
|
618 NDArray::cumsum (int dim) const |
|
619 { |
4584
|
620 MX_ND_CUMULATIVE_OP (NDArray, double, 0, +); |
4513
|
621 } |
|
622 |
4569
|
623 NDArray |
|
624 NDArray::prod (int dim) const |
|
625 { |
|
626 MX_ND_REAL_OP_REDUCTION (*= elem (iter_idx), 1); |
|
627 } |
|
628 |
|
629 NDArray |
|
630 NDArray::sumsq (int dim) const |
|
631 { |
|
632 MX_ND_REAL_OP_REDUCTION (+= std::pow (elem (iter_idx), 2), 0); |
|
633 } |
|
634 |
|
635 NDArray |
|
636 NDArray::sum (int dim) const |
|
637 { |
|
638 MX_ND_REAL_OP_REDUCTION (+= elem (iter_idx), 0); |
|
639 } |
|
640 |
4844
|
641 NDArray |
|
642 NDArray::max (int dim) const |
|
643 { |
|
644 ArrayN<int> dummy_idx; |
|
645 return max (dummy_idx, dim); |
|
646 } |
|
647 |
|
648 NDArray |
|
649 NDArray::max (ArrayN<int>& idx_arg, int dim) const |
|
650 { |
|
651 dim_vector dv = dims (); |
|
652 dim_vector dr = dims (); |
|
653 |
|
654 if (dv.numel () == 0 || dim > dv.length () || dim < 0) |
|
655 return NDArray (); |
|
656 |
|
657 dr(dim) = 1; |
|
658 |
|
659 NDArray result (dr); |
|
660 idx_arg.resize (dr); |
|
661 |
|
662 int x_stride = 1; |
|
663 int x_len = dv(dim); |
|
664 for (int i = 0; i < dim; i++) |
|
665 x_stride *= dv(i); |
|
666 |
|
667 for (int i = 0; i < dr.numel (); i++) |
|
668 { |
|
669 int x_offset; |
|
670 if (x_stride == 1) |
|
671 x_offset = i * x_len; |
|
672 else |
|
673 { |
|
674 int x_offset2 = 0; |
|
675 x_offset = i; |
|
676 while (x_offset >= x_stride) |
|
677 { |
|
678 x_offset -= x_stride; |
|
679 x_offset2++; |
|
680 } |
|
681 x_offset += x_offset2 * x_stride * x_len; |
|
682 } |
|
683 |
|
684 int idx_j; |
|
685 |
|
686 double tmp_max = octave_NaN; |
|
687 |
|
688 for (idx_j = 0; idx_j < x_len; idx_j++) |
|
689 { |
|
690 tmp_max = elem (idx_j * x_stride + x_offset); |
|
691 |
|
692 if (! octave_is_NaN_or_NA (tmp_max)) |
|
693 break; |
|
694 } |
|
695 |
|
696 for (int j = idx_j+1; j < x_len; j++) |
|
697 { |
|
698 double tmp = elem (j * x_stride + x_offset); |
|
699 |
|
700 if (octave_is_NaN_or_NA (tmp)) |
|
701 continue; |
|
702 else if (tmp > tmp_max) |
|
703 { |
|
704 idx_j = j; |
|
705 tmp_max = tmp; |
|
706 } |
|
707 } |
|
708 |
|
709 result.elem (i) = tmp_max; |
|
710 idx_arg.elem (i) = octave_is_NaN_or_NA (tmp_max) ? 0 : idx_j; |
|
711 } |
|
712 |
|
713 return result; |
|
714 } |
|
715 |
|
716 NDArray |
|
717 NDArray::min (int dim) const |
|
718 { |
|
719 ArrayN<int> dummy_idx; |
|
720 return min (dummy_idx, dim); |
|
721 } |
|
722 |
|
723 NDArray |
|
724 NDArray::min (ArrayN<int>& idx_arg, int dim) const |
|
725 { |
|
726 dim_vector dv = dims (); |
|
727 dim_vector dr = dims (); |
|
728 |
|
729 if (dv.numel () == 0 || dim > dv.length () || dim < 0) |
|
730 return NDArray (); |
|
731 |
|
732 dr(dim) = 1; |
|
733 |
|
734 NDArray result (dr); |
|
735 idx_arg.resize (dr); |
|
736 |
|
737 int x_stride = 1; |
|
738 int x_len = dv(dim); |
|
739 for (int i = 0; i < dim; i++) |
|
740 x_stride *= dv(i); |
|
741 |
|
742 for (int i = 0; i < dr.numel (); i++) |
|
743 { |
|
744 int x_offset; |
|
745 if (x_stride == 1) |
|
746 x_offset = i * x_len; |
|
747 else |
|
748 { |
|
749 int x_offset2 = 0; |
|
750 x_offset = i; |
|
751 while (x_offset >= x_stride) |
|
752 { |
|
753 x_offset -= x_stride; |
|
754 x_offset2++; |
|
755 } |
|
756 x_offset += x_offset2 * x_stride * x_len; |
|
757 } |
|
758 |
|
759 int idx_j; |
|
760 |
|
761 double tmp_min = octave_NaN; |
|
762 |
|
763 for (idx_j = 0; idx_j < x_len; idx_j++) |
|
764 { |
|
765 tmp_min = elem (idx_j * x_stride + x_offset); |
|
766 |
|
767 if (! octave_is_NaN_or_NA (tmp_min)) |
|
768 break; |
|
769 } |
|
770 |
|
771 for (int j = idx_j+1; j < x_len; j++) |
|
772 { |
|
773 double tmp = elem (j * x_stride + x_offset); |
|
774 |
|
775 if (octave_is_NaN_or_NA (tmp)) |
|
776 continue; |
|
777 else if (tmp < tmp_min) |
|
778 { |
|
779 idx_j = j; |
|
780 tmp_min = tmp; |
|
781 } |
|
782 } |
|
783 |
|
784 result.elem (i) = tmp_min; |
|
785 idx_arg.elem (i) = octave_is_NaN_or_NA (tmp_min) ? 0 : idx_j; |
|
786 } |
|
787 |
|
788 return result; |
|
789 } |
|
790 |
4915
|
791 NDArray |
5073
|
792 NDArray::concat (const NDArray& rb, const Array<int>& ra_idx) |
4758
|
793 { |
5073
|
794 if (rb.numel () > 0) |
|
795 insert (rb, ra_idx); |
|
796 return *this; |
|
797 } |
|
798 |
|
799 ComplexNDArray |
|
800 NDArray::concat (const ComplexNDArray& rb, const Array<int>& ra_idx) |
|
801 { |
|
802 ComplexNDArray retval (*this); |
4940
|
803 if (rb.numel () > 0) |
4915
|
804 retval.insert (rb, ra_idx); |
|
805 return retval; |
4758
|
806 } |
|
807 |
5073
|
808 charNDArray |
|
809 NDArray::concat (const charNDArray& rb, const Array<int>& ra_idx) |
|
810 { |
|
811 charNDArray retval (dims ()); |
|
812 int nel = numel (); |
|
813 |
|
814 for (int i = 0; i < nel; i++) |
|
815 { |
|
816 double d = elem (i); |
|
817 |
|
818 if (xisnan (d)) |
|
819 { |
|
820 (*current_liboctave_error_handler) |
|
821 ("invalid conversion from NaN to character"); |
|
822 return retval; |
|
823 } |
|
824 else |
|
825 { |
|
826 int ival = NINT (d); |
|
827 |
|
828 if (ival < 0 || ival > UCHAR_MAX) |
|
829 // XXX FIXME XXX -- is there something |
|
830 // better we could do? Should we warn the user? |
|
831 ival = 0; |
|
832 |
|
833 retval.elem (i) = static_cast<char>(ival); |
|
834 } |
|
835 } |
|
836 |
|
837 if (rb.numel () == 0) |
|
838 return retval; |
|
839 |
|
840 retval.insert (rb, ra_idx); |
|
841 return retval; |
|
842 } |
|
843 |
4634
|
844 NDArray |
|
845 real (const ComplexNDArray& a) |
|
846 { |
|
847 int a_len = a.length (); |
|
848 NDArray retval; |
|
849 if (a_len > 0) |
|
850 retval = NDArray (mx_inline_real_dup (a.data (), a_len), a.dims ()); |
|
851 return retval; |
|
852 } |
|
853 |
|
854 NDArray |
|
855 imag (const ComplexNDArray& a) |
|
856 { |
|
857 int a_len = a.length (); |
|
858 NDArray retval; |
|
859 if (a_len > 0) |
|
860 retval = NDArray (mx_inline_imag_dup (a.data (), a_len), a.dims ()); |
|
861 return retval; |
|
862 } |
|
863 |
4915
|
864 NDArray& |
|
865 NDArray::insert (const NDArray& a, int r, int c) |
|
866 { |
|
867 Array<double>::insert (a, r, c); |
|
868 return *this; |
|
869 } |
|
870 |
|
871 NDArray& |
|
872 NDArray::insert (const NDArray& a, const Array<int>& ra_idx) |
|
873 { |
|
874 Array<double>::insert (a, ra_idx); |
|
875 return *this; |
|
876 } |
|
877 |
4634
|
878 NDArray |
4569
|
879 NDArray::abs (void) const |
|
880 { |
4634
|
881 NDArray retval (dims ()); |
4569
|
882 |
4634
|
883 int nel = nelem (); |
|
884 |
|
885 for (int i = 0; i < nel; i++) |
|
886 retval(i) = fabs (elem (i)); |
4569
|
887 |
|
888 return retval; |
|
889 } |
|
890 |
4532
|
891 Matrix |
|
892 NDArray::matrix_value (void) const |
|
893 { |
|
894 Matrix retval; |
|
895 |
|
896 int nd = ndims (); |
|
897 |
|
898 switch (nd) |
|
899 { |
|
900 case 1: |
|
901 retval = Matrix (Array2<double> (*this, dimensions(0), 1)); |
|
902 break; |
|
903 |
|
904 case 2: |
|
905 retval = Matrix (Array2<double> (*this, dimensions(0), dimensions(1))); |
|
906 break; |
|
907 |
|
908 default: |
|
909 (*current_liboctave_error_handler) |
4770
|
910 ("invalid conversion of NDArray to Matrix"); |
4532
|
911 break; |
|
912 } |
|
913 |
|
914 return retval; |
|
915 } |
|
916 |
|
917 void |
|
918 NDArray::increment_index (Array<int>& ra_idx, |
|
919 const dim_vector& dimensions, |
|
920 int start_dimension) |
|
921 { |
|
922 ::increment_index (ra_idx, dimensions, start_dimension); |
|
923 } |
|
924 |
4556
|
925 int |
|
926 NDArray::compute_index (Array<int>& ra_idx, |
|
927 const dim_vector& dimensions) |
|
928 { |
|
929 return ::compute_index (ra_idx, dimensions); |
|
930 } |
|
931 |
4687
|
932 // This contains no information on the array structure !!! |
|
933 std::ostream& |
|
934 operator << (std::ostream& os, const NDArray& a) |
|
935 { |
|
936 int nel = a.nelem (); |
|
937 |
|
938 for (int i = 0; i < nel; i++) |
|
939 { |
|
940 os << " "; |
|
941 octave_write_double (os, a.elem (i)); |
|
942 os << "\n"; |
|
943 } |
|
944 return os; |
|
945 } |
|
946 |
|
947 std::istream& |
|
948 operator >> (std::istream& is, NDArray& a) |
|
949 { |
|
950 int nel = a.nelem (); |
|
951 |
|
952 if (nel < 1 ) |
|
953 is.clear (std::ios::badbit); |
|
954 else |
|
955 { |
|
956 double tmp; |
|
957 for (int i = 0; i < nel; i++) |
|
958 { |
|
959 tmp = octave_read_double (is); |
|
960 if (is) |
|
961 a.elem (i) = tmp; |
|
962 else |
|
963 goto done; |
|
964 } |
|
965 } |
|
966 |
|
967 done: |
|
968 |
|
969 return is; |
|
970 } |
|
971 |
4844
|
972 // XXX FIXME XXX -- it would be nice to share code among the min/max |
|
973 // functions below. |
|
974 |
|
975 #define EMPTY_RETURN_CHECK(T) \ |
|
976 if (nel == 0) \ |
|
977 return T (dv); |
|
978 |
|
979 NDArray |
|
980 min (double d, const NDArray& m) |
|
981 { |
|
982 dim_vector dv = m.dims (); |
|
983 int nel = dv.numel (); |
|
984 |
|
985 EMPTY_RETURN_CHECK (NDArray); |
|
986 |
|
987 NDArray result (dv); |
|
988 |
|
989 for (int i = 0; i < nel; i++) |
|
990 { |
|
991 OCTAVE_QUIT; |
|
992 result (i) = xmin (d, m (i)); |
|
993 } |
|
994 |
|
995 return result; |
|
996 } |
|
997 |
|
998 NDArray |
|
999 min (const NDArray& m, double d) |
|
1000 { |
|
1001 dim_vector dv = m.dims (); |
|
1002 int nel = dv.numel (); |
|
1003 |
|
1004 EMPTY_RETURN_CHECK (NDArray); |
|
1005 |
|
1006 NDArray result (dv); |
|
1007 |
|
1008 for (int i = 0; i < nel; i++) |
|
1009 { |
|
1010 OCTAVE_QUIT; |
|
1011 result (i) = xmin (d, m (i)); |
|
1012 } |
|
1013 |
|
1014 return result; |
|
1015 } |
|
1016 |
|
1017 NDArray |
|
1018 min (const NDArray& a, const NDArray& b) |
|
1019 { |
|
1020 dim_vector dv = a.dims (); |
|
1021 int nel = dv.numel (); |
|
1022 |
|
1023 if (dv != b.dims ()) |
|
1024 { |
|
1025 (*current_liboctave_error_handler) |
|
1026 ("two-arg min expecting args of same size"); |
|
1027 return NDArray (); |
|
1028 } |
|
1029 |
|
1030 EMPTY_RETURN_CHECK (NDArray); |
|
1031 |
|
1032 NDArray result (dv); |
|
1033 |
|
1034 for (int i = 0; i < nel; i++) |
|
1035 { |
|
1036 OCTAVE_QUIT; |
|
1037 result (i) = xmin (a (i), b (i)); |
|
1038 } |
|
1039 |
|
1040 return result; |
|
1041 } |
|
1042 |
|
1043 NDArray |
|
1044 max (double d, const NDArray& m) |
|
1045 { |
|
1046 dim_vector dv = m.dims (); |
|
1047 int nel = dv.numel (); |
|
1048 |
|
1049 EMPTY_RETURN_CHECK (NDArray); |
|
1050 |
|
1051 NDArray result (dv); |
|
1052 |
|
1053 for (int i = 0; i < nel; i++) |
|
1054 { |
|
1055 OCTAVE_QUIT; |
|
1056 result (i) = xmax (d, m (i)); |
|
1057 } |
|
1058 |
|
1059 return result; |
|
1060 } |
|
1061 |
|
1062 NDArray |
|
1063 max (const NDArray& m, double d) |
|
1064 { |
|
1065 dim_vector dv = m.dims (); |
|
1066 int nel = dv.numel (); |
|
1067 |
|
1068 EMPTY_RETURN_CHECK (NDArray); |
|
1069 |
|
1070 NDArray result (dv); |
|
1071 |
|
1072 for (int i = 0; i < nel; i++) |
|
1073 { |
|
1074 OCTAVE_QUIT; |
|
1075 result (i) = xmax (d, m (i)); |
|
1076 } |
|
1077 |
|
1078 return result; |
|
1079 } |
|
1080 |
|
1081 NDArray |
|
1082 max (const NDArray& a, const NDArray& b) |
|
1083 { |
|
1084 dim_vector dv = a.dims (); |
|
1085 int nel = dv.numel (); |
|
1086 |
|
1087 if (dv != b.dims ()) |
|
1088 { |
|
1089 (*current_liboctave_error_handler) |
|
1090 ("two-arg max expecting args of same size"); |
|
1091 return NDArray (); |
|
1092 } |
|
1093 |
|
1094 EMPTY_RETURN_CHECK (NDArray); |
|
1095 |
|
1096 NDArray result (dv); |
|
1097 |
|
1098 for (int i = 0; i < nel; i++) |
|
1099 { |
|
1100 OCTAVE_QUIT; |
|
1101 result (i) = xmax (a (i), b (i)); |
|
1102 } |
|
1103 |
|
1104 return result; |
|
1105 } |
|
1106 |
4543
|
1107 NDS_CMP_OPS(NDArray, , double, ) |
|
1108 NDS_BOOL_OPS(NDArray, double, 0.0) |
|
1109 |
|
1110 SND_CMP_OPS(double, , NDArray, ) |
|
1111 SND_BOOL_OPS(double, NDArray, 0.0) |
|
1112 |
|
1113 NDND_CMP_OPS(NDArray, , NDArray, ) |
|
1114 NDND_BOOL_OPS(NDArray, NDArray, 0.0) |
|
1115 |
4513
|
1116 /* |
|
1117 ;;; Local Variables: *** |
|
1118 ;;; mode: C++ *** |
|
1119 ;;; End: *** |
|
1120 */ |