3191
|
1 ## Copyright (C) 1995, 1996, 1997 Kurt Hornik |
3426
|
2 ## |
3922
|
3 ## This file is part of Octave. |
|
4 ## |
|
5 ## Octave is free software; you can redistribute it and/or modify it |
|
6 ## under the terms of the GNU General Public License as published by |
3191
|
7 ## the Free Software Foundation; either version 2, or (at your option) |
|
8 ## any later version. |
3426
|
9 ## |
3922
|
10 ## Octave is distributed in the hope that it will be useful, but |
3191
|
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
3426
|
13 ## General Public License for more details. |
|
14 ## |
3191
|
15 ## You should have received a copy of the GNU General Public License |
3922
|
16 ## along with Octave; see the file COPYING. If not, write to the Free |
5307
|
17 ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
|
18 ## 02110-1301, USA. |
3191
|
19 |
3454
|
20 ## -*- texinfo -*- |
|
21 ## @deftypefn {Functio File} {[@var{theta}, @var{beta}, @var{dev}, @var{dl}, @var{d2l}, @var{p}] =} logistic_regression (@var{y}, @var{x}, @var{print}, @var{theta}, @var{beta}) |
|
22 ## Perform ordinal logistic regression. |
3191
|
23 ## |
3454
|
24 ## Suppose @var{y} takes values in @var{k} ordered categories, and let |
|
25 ## @code{gamma_i (@var{x})} be the cumulative probability that @var{y} |
|
26 ## falls in one of the first @var{i} categories given the covariate |
|
27 ## @var{x}. Then |
|
28 ## |
|
29 ## @example |
|
30 ## [theta, beta] = logistic_regression (y, x) |
|
31 ## @end example |
|
32 ## |
|
33 ## @noindent |
3191
|
34 ## fits the model |
3454
|
35 ## |
|
36 ## @example |
|
37 ## logit (gamma_i (x)) = theta_i - beta' * x, i = 1, ..., k-1 |
|
38 ## @end example |
3191
|
39 ## |
3454
|
40 ## The number of ordinal categories, @var{k}, is taken to be the number |
|
41 ## of distinct values of @code{round (@var{y})}. If @var{k} equals 2, |
|
42 ## @var{y} is binary and the model is ordinary logistic regression. The |
|
43 ## matrix @var{x} is assumed to have full column rank. |
|
44 ## |
|
45 ## Given @var{y} only, @code{theta = logistic_regression (y)} |
3191
|
46 ## fits the model with baseline logit odds only. |
|
47 ## |
|
48 ## The full form is |
3454
|
49 ## |
|
50 ## @example |
|
51 ## [theta, beta, dev, dl, d2l, gamma] |
|
52 ## = logistic_regression (y, x, print, theta, beta) |
|
53 ## @end example |
|
54 ## |
|
55 ## @noindent |
|
56 ## in which all output arguments and all input arguments except @var{y} |
|
57 ## are optional. |
3191
|
58 ## |
3454
|
59 ## Stting @var{print} to 1 requests summary information about the fitted |
|
60 ## model to be displayed. Setting @var{print} to 2 requests information |
|
61 ## about convergence at each iteration. Other values request no |
|
62 ## information to be displayed. The input arguments @var{theta} and |
|
63 ## @var{beta} give initial estimates for @var{theta} and @var{beta}. |
|
64 ## |
|
65 ## The returned value @var{dev} holds minus twice the log-likelihood. |
3191
|
66 ## |
3454
|
67 ## The returned values @var{dl} and @var{d2l} are the vector of first |
|
68 ## and the matrix of second derivatives of the log-likelihood with |
|
69 ## respect to @var{theta} and @var{beta}. |
3191
|
70 ## |
3454
|
71 ## @var{p} holds estimates for the conditional distribution of @var{y} |
|
72 ## given @var{x}. |
|
73 ## @end deftypefn |
3191
|
74 |
3426
|
75 ## Original for MATLAB written by Gordon K Smyth <gks@maths.uq.oz.au>, |
3191
|
76 ## U of Queensland, Australia, on Nov 19, 1990. Last revision Aug 3, |
|
77 ## 1992. |
|
78 |
3456
|
79 ## Author: Gordon K Smyth <gks@maths.uq.oz.au>, |
5428
|
80 ## Adapted-By: KH <Kurt.Hornik@wu-wien.ac.at> |
3456
|
81 ## Description: Ordinal logistic regression |
3191
|
82 |
|
83 ## Uses the auxiliary functions logistic_regression_derivatives and |
|
84 ## logistic_regression_likelihood. |
|
85 |
|
86 function [theta, beta, dev, dl, d2l, p] ... |
3454
|
87 = logistic_regression (y, x, print, theta, beta) |
3426
|
88 |
3191
|
89 ## check input |
3426
|
90 y = round (vec (y)); |
|
91 [my, ny] = size (y); |
3191
|
92 if (nargin < 2) |
3426
|
93 x = zeros (my, 0); |
3191
|
94 endif; |
3238
|
95 [mx, nx] = size (x); |
3191
|
96 if (mx != my) |
|
97 error ("x and y must have the same number of observations"); |
|
98 endif |
3426
|
99 |
3191
|
100 ## initial calculations |
|
101 x = -x; |
|
102 tol = 1e-6; incr = 10; decr = 2; |
|
103 ymin = min (y); ymax = max (y); yrange = ymax - ymin; |
|
104 z = (y * ones (1, yrange)) == ((y * 0 + 1) * (ymin : (ymax - 1))); |
|
105 z1 = (y * ones (1, yrange)) == ((y * 0 + 1) * ((ymin + 1) : ymax)); |
3426
|
106 z = z(:, any (z)); |
|
107 z1 = z1 (:, any(z1)); |
3238
|
108 [mz, nz] = size (z); |
3426
|
109 |
3191
|
110 ## starting values |
|
111 if (nargin < 3) |
3426
|
112 print = 0; |
3191
|
113 endif; |
3426
|
114 if (nargin < 4) |
|
115 beta = zeros (nx, 1); |
3191
|
116 endif; |
3426
|
117 if (nargin < 5) |
|
118 g = cumsum (sum (z))' ./ my; |
|
119 theta = log (g ./ (1 - g)); |
3191
|
120 endif; |
|
121 tb = [theta; beta]; |
|
122 |
|
123 ## likelihood and derivatives at starting values |
|
124 [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); |
|
125 [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p); |
|
126 epsilon = std (vec (d2l)) / 1000; |
3426
|
127 |
3191
|
128 ## maximize likelihood using Levenberg modified Newton's method |
|
129 iter = 0; |
|
130 while (abs (dl' * (d2l \ dl) / length (dl)) > tol) |
|
131 iter = iter + 1; |
|
132 tbold = tb; |
|
133 devold = dev; |
|
134 tb = tbold - d2l \ dl; |
|
135 [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); |
|
136 if ((dev - devold) / (dl' * (tb - tbold)) < 0) |
|
137 epsilon = epsilon / decr; |
|
138 else |
|
139 while ((dev - devold) / (dl' * (tb - tbold)) > 0) |
3426
|
140 epsilon = epsilon * incr; |
3191
|
141 if (epsilon > 1e+15) |
3426
|
142 error ("epsilon too large"); |
3191
|
143 endif |
3426
|
144 tb = tbold - (d2l - epsilon * eye (size (d2l))) \ dl; |
|
145 [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); |
3191
|
146 disp ("epsilon"); disp (epsilon); |
|
147 endwhile |
|
148 endif |
|
149 [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p); |
|
150 if (print == 2) |
|
151 disp ("Iteration"); disp (iter); |
|
152 disp ("Deviance"); disp (dev); |
|
153 disp ("First derivative"); disp (dl'); |
|
154 disp ("Eigenvalues of second derivative"); disp (eig (d2l)'); |
|
155 endif |
|
156 endwhile |
|
157 |
|
158 ## tidy up output |
|
159 |
|
160 theta = tb (1 : nz, 1); |
|
161 beta = tb ((nz + 1) : (nz + nx), 1); |
|
162 |
|
163 if (print >= 1) |
|
164 printf ("\n"); |
|
165 printf ("Logistic Regression Results:\n"); |
3426
|
166 printf ("\n"); |
3456
|
167 printf ("Number of Iterations: %d\n", iter); |
|
168 printf ("Deviance: %f\n", dev); |
3191
|
169 printf ("Parameter Estimates:\n"); |
|
170 printf (" Theta S.E.\n"); |
3426
|
171 se = sqrt (diag (inv (-d2l))); |
3191
|
172 for i = 1 : nz |
|
173 printf (" %8.4f %8.4f\n", tb (i), se (i)); |
|
174 endfor |
|
175 if (nx > 0) |
|
176 printf (" Beta S.E.\n"); |
|
177 for i = (nz + 1) : (nz + nx) |
3426
|
178 printf (" %8.4f %8.4f\n", tb (i), se (i)); |
3191
|
179 endfor |
|
180 endif |
|
181 endif |
|
182 |
|
183 if (nargout == 6) |
|
184 if (nx > 0) |
|
185 e = ((x * beta) * ones (1, nz)) + ((y * 0 + 1) * theta'); |
|
186 else |
|
187 e = (y * 0 + 1) * theta'; |
|
188 endif |
3238
|
189 gamma = diff ([(y * 0), (exp (e) ./ (1 + exp (e))), (y * 0 + 1)]')'; |
3191
|
190 endif |
3426
|
191 |
3191
|
192 endfunction |