7053
|
1 SUBROUTINE ZGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB ) |
|
2 * |
|
3 * -- LAPACK auxiliary routine (version 3.1) -- |
|
4 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. |
|
5 * November 2006 |
|
6 * |
|
7 * .. Scalar Arguments .. |
|
8 INTEGER ITRANS, LDB, N, NRHS |
|
9 * .. |
|
10 * .. Array Arguments .. |
|
11 INTEGER IPIV( * ) |
|
12 COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * ) |
|
13 * .. |
|
14 * |
|
15 * Purpose |
|
16 * ======= |
|
17 * |
|
18 * ZGTTS2 solves one of the systems of equations |
|
19 * A * X = B, A**T * X = B, or A**H * X = B, |
|
20 * with a tridiagonal matrix A using the LU factorization computed |
|
21 * by ZGTTRF. |
|
22 * |
|
23 * Arguments |
|
24 * ========= |
|
25 * |
|
26 * ITRANS (input) INTEGER |
|
27 * Specifies the form of the system of equations. |
|
28 * = 0: A * X = B (No transpose) |
|
29 * = 1: A**T * X = B (Transpose) |
|
30 * = 2: A**H * X = B (Conjugate transpose) |
|
31 * |
|
32 * N (input) INTEGER |
|
33 * The order of the matrix A. |
|
34 * |
|
35 * NRHS (input) INTEGER |
|
36 * The number of right hand sides, i.e., the number of columns |
|
37 * of the matrix B. NRHS >= 0. |
|
38 * |
|
39 * DL (input) COMPLEX*16 array, dimension (N-1) |
|
40 * The (n-1) multipliers that define the matrix L from the |
|
41 * LU factorization of A. |
|
42 * |
|
43 * D (input) COMPLEX*16 array, dimension (N) |
|
44 * The n diagonal elements of the upper triangular matrix U from |
|
45 * the LU factorization of A. |
|
46 * |
|
47 * DU (input) COMPLEX*16 array, dimension (N-1) |
|
48 * The (n-1) elements of the first super-diagonal of U. |
|
49 * |
|
50 * DU2 (input) COMPLEX*16 array, dimension (N-2) |
|
51 * The (n-2) elements of the second super-diagonal of U. |
|
52 * |
|
53 * IPIV (input) INTEGER array, dimension (N) |
|
54 * The pivot indices; for 1 <= i <= n, row i of the matrix was |
|
55 * interchanged with row IPIV(i). IPIV(i) will always be either |
|
56 * i or i+1; IPIV(i) = i indicates a row interchange was not |
|
57 * required. |
|
58 * |
|
59 * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) |
|
60 * On entry, the matrix of right hand side vectors B. |
|
61 * On exit, B is overwritten by the solution vectors X. |
|
62 * |
|
63 * LDB (input) INTEGER |
|
64 * The leading dimension of the array B. LDB >= max(1,N). |
|
65 * |
|
66 * ===================================================================== |
|
67 * |
|
68 * .. Local Scalars .. |
|
69 INTEGER I, J |
|
70 COMPLEX*16 TEMP |
|
71 * .. |
|
72 * .. Intrinsic Functions .. |
|
73 INTRINSIC DCONJG |
|
74 * .. |
|
75 * .. Executable Statements .. |
|
76 * |
|
77 * Quick return if possible |
|
78 * |
|
79 IF( N.EQ.0 .OR. NRHS.EQ.0 ) |
|
80 $ RETURN |
|
81 * |
|
82 IF( ITRANS.EQ.0 ) THEN |
|
83 * |
|
84 * Solve A*X = B using the LU factorization of A, |
|
85 * overwriting each right hand side vector with its solution. |
|
86 * |
|
87 IF( NRHS.LE.1 ) THEN |
|
88 J = 1 |
|
89 10 CONTINUE |
|
90 * |
|
91 * Solve L*x = b. |
|
92 * |
|
93 DO 20 I = 1, N - 1 |
|
94 IF( IPIV( I ).EQ.I ) THEN |
|
95 B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J ) |
|
96 ELSE |
|
97 TEMP = B( I, J ) |
|
98 B( I, J ) = B( I+1, J ) |
|
99 B( I+1, J ) = TEMP - DL( I )*B( I, J ) |
|
100 END IF |
|
101 20 CONTINUE |
|
102 * |
|
103 * Solve U*x = b. |
|
104 * |
|
105 B( N, J ) = B( N, J ) / D( N ) |
|
106 IF( N.GT.1 ) |
|
107 $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / |
|
108 $ D( N-1 ) |
|
109 DO 30 I = N - 2, 1, -1 |
|
110 B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )* |
|
111 $ B( I+2, J ) ) / D( I ) |
|
112 30 CONTINUE |
|
113 IF( J.LT.NRHS ) THEN |
|
114 J = J + 1 |
|
115 GO TO 10 |
|
116 END IF |
|
117 ELSE |
|
118 DO 60 J = 1, NRHS |
|
119 * |
|
120 * Solve L*x = b. |
|
121 * |
|
122 DO 40 I = 1, N - 1 |
|
123 IF( IPIV( I ).EQ.I ) THEN |
|
124 B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J ) |
|
125 ELSE |
|
126 TEMP = B( I, J ) |
|
127 B( I, J ) = B( I+1, J ) |
|
128 B( I+1, J ) = TEMP - DL( I )*B( I, J ) |
|
129 END IF |
|
130 40 CONTINUE |
|
131 * |
|
132 * Solve U*x = b. |
|
133 * |
|
134 B( N, J ) = B( N, J ) / D( N ) |
|
135 IF( N.GT.1 ) |
|
136 $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / |
|
137 $ D( N-1 ) |
|
138 DO 50 I = N - 2, 1, -1 |
|
139 B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )* |
|
140 $ B( I+2, J ) ) / D( I ) |
|
141 50 CONTINUE |
|
142 60 CONTINUE |
|
143 END IF |
|
144 ELSE IF( ITRANS.EQ.1 ) THEN |
|
145 * |
|
146 * Solve A**T * X = B. |
|
147 * |
|
148 IF( NRHS.LE.1 ) THEN |
|
149 J = 1 |
|
150 70 CONTINUE |
|
151 * |
|
152 * Solve U**T * x = b. |
|
153 * |
|
154 B( 1, J ) = B( 1, J ) / D( 1 ) |
|
155 IF( N.GT.1 ) |
|
156 $ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 ) |
|
157 DO 80 I = 3, N |
|
158 B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )* |
|
159 $ B( I-2, J ) ) / D( I ) |
|
160 80 CONTINUE |
|
161 * |
|
162 * Solve L**T * x = b. |
|
163 * |
|
164 DO 90 I = N - 1, 1, -1 |
|
165 IF( IPIV( I ).EQ.I ) THEN |
|
166 B( I, J ) = B( I, J ) - DL( I )*B( I+1, J ) |
|
167 ELSE |
|
168 TEMP = B( I+1, J ) |
|
169 B( I+1, J ) = B( I, J ) - DL( I )*TEMP |
|
170 B( I, J ) = TEMP |
|
171 END IF |
|
172 90 CONTINUE |
|
173 IF( J.LT.NRHS ) THEN |
|
174 J = J + 1 |
|
175 GO TO 70 |
|
176 END IF |
|
177 ELSE |
|
178 DO 120 J = 1, NRHS |
|
179 * |
|
180 * Solve U**T * x = b. |
|
181 * |
|
182 B( 1, J ) = B( 1, J ) / D( 1 ) |
|
183 IF( N.GT.1 ) |
|
184 $ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 ) |
|
185 DO 100 I = 3, N |
|
186 B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )- |
|
187 $ DU2( I-2 )*B( I-2, J ) ) / D( I ) |
|
188 100 CONTINUE |
|
189 * |
|
190 * Solve L**T * x = b. |
|
191 * |
|
192 DO 110 I = N - 1, 1, -1 |
|
193 IF( IPIV( I ).EQ.I ) THEN |
|
194 B( I, J ) = B( I, J ) - DL( I )*B( I+1, J ) |
|
195 ELSE |
|
196 TEMP = B( I+1, J ) |
|
197 B( I+1, J ) = B( I, J ) - DL( I )*TEMP |
|
198 B( I, J ) = TEMP |
|
199 END IF |
|
200 110 CONTINUE |
|
201 120 CONTINUE |
|
202 END IF |
|
203 ELSE |
|
204 * |
|
205 * Solve A**H * X = B. |
|
206 * |
|
207 IF( NRHS.LE.1 ) THEN |
|
208 J = 1 |
|
209 130 CONTINUE |
|
210 * |
|
211 * Solve U**H * x = b. |
|
212 * |
|
213 B( 1, J ) = B( 1, J ) / DCONJG( D( 1 ) ) |
|
214 IF( N.GT.1 ) |
|
215 $ B( 2, J ) = ( B( 2, J )-DCONJG( DU( 1 ) )*B( 1, J ) ) / |
|
216 $ DCONJG( D( 2 ) ) |
|
217 DO 140 I = 3, N |
|
218 B( I, J ) = ( B( I, J )-DCONJG( DU( I-1 ) )*B( I-1, J )- |
|
219 $ DCONJG( DU2( I-2 ) )*B( I-2, J ) ) / |
|
220 $ DCONJG( D( I ) ) |
|
221 140 CONTINUE |
|
222 * |
|
223 * Solve L**H * x = b. |
|
224 * |
|
225 DO 150 I = N - 1, 1, -1 |
|
226 IF( IPIV( I ).EQ.I ) THEN |
|
227 B( I, J ) = B( I, J ) - DCONJG( DL( I ) )*B( I+1, J ) |
|
228 ELSE |
|
229 TEMP = B( I+1, J ) |
|
230 B( I+1, J ) = B( I, J ) - DCONJG( DL( I ) )*TEMP |
|
231 B( I, J ) = TEMP |
|
232 END IF |
|
233 150 CONTINUE |
|
234 IF( J.LT.NRHS ) THEN |
|
235 J = J + 1 |
|
236 GO TO 130 |
|
237 END IF |
|
238 ELSE |
|
239 DO 180 J = 1, NRHS |
|
240 * |
|
241 * Solve U**H * x = b. |
|
242 * |
|
243 B( 1, J ) = B( 1, J ) / DCONJG( D( 1 ) ) |
|
244 IF( N.GT.1 ) |
|
245 $ B( 2, J ) = ( B( 2, J )-DCONJG( DU( 1 ) )*B( 1, J ) ) |
|
246 $ / DCONJG( D( 2 ) ) |
|
247 DO 160 I = 3, N |
|
248 B( I, J ) = ( B( I, J )-DCONJG( DU( I-1 ) )* |
|
249 $ B( I-1, J )-DCONJG( DU2( I-2 ) )* |
|
250 $ B( I-2, J ) ) / DCONJG( D( I ) ) |
|
251 160 CONTINUE |
|
252 * |
|
253 * Solve L**H * x = b. |
|
254 * |
|
255 DO 170 I = N - 1, 1, -1 |
|
256 IF( IPIV( I ).EQ.I ) THEN |
|
257 B( I, J ) = B( I, J ) - DCONJG( DL( I ) )* |
|
258 $ B( I+1, J ) |
|
259 ELSE |
|
260 TEMP = B( I+1, J ) |
|
261 B( I+1, J ) = B( I, J ) - DCONJG( DL( I ) )*TEMP |
|
262 B( I, J ) = TEMP |
|
263 END IF |
|
264 170 CONTINUE |
|
265 180 CONTINUE |
|
266 END IF |
|
267 END IF |
|
268 * |
|
269 * End of ZGTTS2 |
|
270 * |
|
271 END |