3
|
1 // ColumnVector manipulations. -*- C++ -*- |
|
2 /* |
|
3 |
|
4 Copyright (C) 1992, 1993 John W. Eaton |
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
|
20 Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
|
21 |
|
22 */ |
|
23 |
238
|
24 #ifdef HAVE_CONFIG_H |
|
25 #include "config.h" |
|
26 #endif |
|
27 |
|
28 #include <iostream.h> |
3
|
29 |
|
30 #include "Matrix.h" |
|
31 #include "mx-inlines.cc" |
238
|
32 #include "f77-uscore.h" |
227
|
33 #include "lo-error.h" |
230
|
34 |
|
35 // Fortran functions we call. |
|
36 |
|
37 extern "C" |
|
38 { |
|
39 int F77_FCN (dgemm) (const char*, const char*, const int*, |
|
40 const int*, const int*, const double*, |
|
41 const double*, const int*, const double*, |
|
42 const int*, const double*, double*, const int*, |
|
43 long, long); |
|
44 |
|
45 /* |
|
46 * f2c translates complex*16 as |
|
47 * |
|
48 * typedef struct { doublereal re, im; } doublecomplex; |
|
49 * |
|
50 * and Complex.h from libg++ uses |
|
51 * |
|
52 * protected: |
|
53 * double re; |
|
54 * double im; |
|
55 * |
|
56 * as the only data members, so this should work (fingers crossed that |
|
57 * things don't change). |
|
58 */ |
|
59 |
|
60 int F77_FCN (zgemm) (const char*, const char*, const int*, |
|
61 const int*, const int*, const Complex*, |
|
62 const Complex*, const int*, const Complex*, |
|
63 const int*, const Complex*, Complex*, const int*, |
|
64 long, long); |
|
65 } |
3
|
66 |
|
67 /* |
|
68 * Column Vector class. |
|
69 */ |
|
70 |
238
|
71 #if 0 |
3
|
72 ColumnVector& |
|
73 ColumnVector::resize (int n) |
|
74 { |
|
75 if (n < 0) |
227
|
76 { |
|
77 (*current_liboctave_error_handler) |
|
78 ("can't resize to negative dimension"); |
|
79 return *this; |
|
80 } |
3
|
81 |
|
82 double *new_data = (double *) NULL; |
|
83 if (n > 0) |
|
84 { |
|
85 new_data = new double [n]; |
|
86 int min_len = len < n ? len : n; |
|
87 |
|
88 for (int i = 0; i < min_len; i++) |
|
89 new_data[i] = data[i]; |
|
90 } |
|
91 |
|
92 delete [] data; |
|
93 len = n; |
|
94 data = new_data; |
|
95 |
|
96 return *this; |
|
97 } |
|
98 |
|
99 ColumnVector& |
|
100 ColumnVector::resize (int n, double val) |
|
101 { |
|
102 int old_len = len; |
|
103 resize (n); |
|
104 for (int i = old_len; i < len; i++) |
|
105 data[i] = val; |
|
106 |
|
107 return *this; |
|
108 } |
238
|
109 #endif |
3
|
110 |
|
111 int |
|
112 ColumnVector::operator == (const ColumnVector& a) const |
|
113 { |
238
|
114 int len = length (); |
|
115 if (len != a.length ()) |
3
|
116 return 0; |
238
|
117 return equal (data (), a.data (), len); |
3
|
118 } |
|
119 |
|
120 int |
|
121 ColumnVector::operator != (const ColumnVector& a) const |
|
122 { |
238
|
123 return !(*this == a); |
3
|
124 } |
|
125 |
|
126 ColumnVector& |
|
127 ColumnVector::insert (const ColumnVector& a, int r) |
|
128 { |
238
|
129 int a_len = a.length (); |
|
130 if (r < 0 || r + a_len - 1 > length ()) |
227
|
131 { |
|
132 (*current_liboctave_error_handler) ("range error for insert"); |
|
133 return *this; |
|
134 } |
3
|
135 |
238
|
136 for (int i = 0; i < a_len; i++) |
|
137 elem (r+i) = a.elem (i); |
3
|
138 |
|
139 return *this; |
|
140 } |
|
141 |
|
142 ColumnVector& |
|
143 ColumnVector::fill (double val) |
|
144 { |
238
|
145 int len = length (); |
3
|
146 if (len > 0) |
238
|
147 for (int i = 0; i < len; i++) |
|
148 elem (i) = val; |
3
|
149 return *this; |
|
150 } |
|
151 |
|
152 ColumnVector& |
|
153 ColumnVector::fill (double val, int r1, int r2) |
|
154 { |
238
|
155 int len = length (); |
3
|
156 if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) |
227
|
157 { |
|
158 (*current_liboctave_error_handler) ("range error for fill"); |
|
159 return *this; |
|
160 } |
3
|
161 |
|
162 if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } |
|
163 |
|
164 for (int i = r1; i <= r2; i++) |
238
|
165 elem (i) = val; |
3
|
166 |
|
167 return *this; |
|
168 } |
|
169 |
|
170 ColumnVector |
|
171 ColumnVector::stack (const ColumnVector& a) const |
|
172 { |
238
|
173 int len = length (); |
3
|
174 int nr_insert = len; |
238
|
175 ColumnVector retval (len + a.length ()); |
3
|
176 retval.insert (*this, 0); |
|
177 retval.insert (a, nr_insert); |
|
178 return retval; |
|
179 } |
|
180 |
|
181 RowVector |
|
182 ColumnVector::transpose (void) const |
|
183 { |
238
|
184 int len = length (); |
|
185 return RowVector (dup (data (), len), len); |
3
|
186 } |
|
187 |
|
188 // resize is the destructive equivalent for this one |
|
189 |
|
190 ColumnVector |
|
191 ColumnVector::extract (int r1, int r2) const |
|
192 { |
|
193 if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } |
|
194 |
|
195 int new_r = r2 - r1 + 1; |
|
196 |
|
197 ColumnVector result (new_r); |
|
198 |
|
199 for (int i = 0; i < new_r; i++) |
238
|
200 result.elem (i) = elem (r1+i); |
3
|
201 |
|
202 return result; |
|
203 } |
|
204 |
238
|
205 // column vector by column vector -> column vector operations |
3
|
206 |
238
|
207 ColumnVector& |
|
208 ColumnVector::operator += (const ColumnVector& a) |
3
|
209 { |
238
|
210 int len = length (); |
|
211 if (len != a.length ()) |
|
212 { |
|
213 (*current_liboctave_error_handler) |
|
214 ("nonconformant vector += operation attempted"); |
|
215 return ColumnVector (); |
|
216 } |
|
217 |
|
218 if (len == 0) |
|
219 return *this; |
|
220 |
|
221 double *d = fortran_vec (); // Ensures only one reference to my privates! |
|
222 |
|
223 add2 (d, a.data (), len); |
|
224 return *this; |
3
|
225 } |
|
226 |
238
|
227 ColumnVector& |
|
228 ColumnVector::operator -= (const ColumnVector& a) |
3
|
229 { |
238
|
230 int len = length (); |
|
231 if (len != a.length ()) |
|
232 { |
|
233 (*current_liboctave_error_handler) |
|
234 ("nonconformant vector -= operation attempted"); |
|
235 return ColumnVector (); |
|
236 } |
3
|
237 |
238
|
238 if (len == 0) |
|
239 return *this; |
3
|
240 |
238
|
241 double *d = fortran_vec (); // Ensures only one reference to my privates! |
|
242 |
|
243 subtract2 (d, a.data (), len); |
|
244 return *this; |
3
|
245 } |
|
246 |
|
247 // scalar by column vector -> column vector operations |
|
248 |
238
|
249 ComplexColumnVector |
|
250 operator + (const ColumnVector& a, const Complex& s) |
3
|
251 { |
238
|
252 int len = a.length (); |
|
253 return ComplexColumnVector (add (a.data (), len, s), len); |
3
|
254 } |
|
255 |
238
|
256 ComplexColumnVector |
|
257 operator - (const ColumnVector& a, const Complex& s) |
3
|
258 { |
238
|
259 int len = a.length (); |
|
260 return ComplexColumnVector (subtract (a.data (), len, s), len); |
3
|
261 } |
|
262 |
238
|
263 ComplexColumnVector |
|
264 operator * (const ColumnVector& a, const Complex& s) |
3
|
265 { |
238
|
266 int len = a.length (); |
|
267 return ComplexColumnVector (multiply (a.data (), len, s), len); |
3
|
268 } |
|
269 |
|
270 ComplexColumnVector |
238
|
271 operator / (const ColumnVector& a, const Complex& s) |
3
|
272 { |
238
|
273 int len = a.length (); |
|
274 return ComplexColumnVector (divide (a.data (), len, s), len); |
|
275 } |
|
276 |
|
277 // scalar by column vector -> column vector operations |
|
278 |
|
279 ComplexColumnVector |
|
280 operator + (const Complex& s, const ColumnVector& a) |
|
281 { |
|
282 int a_len = a.length (); |
|
283 return ComplexColumnVector (add (a.data (), a_len, s), a_len); |
3
|
284 } |
|
285 |
|
286 ComplexColumnVector |
238
|
287 operator - (const Complex& s, const ColumnVector& a) |
3
|
288 { |
238
|
289 int a_len = a.length (); |
|
290 return ComplexColumnVector (subtract (s, a.data (), a_len), a_len); |
3
|
291 } |
|
292 |
|
293 ComplexColumnVector |
238
|
294 operator * (const Complex& s, const ColumnVector& a) |
3
|
295 { |
238
|
296 int a_len = a.length (); |
|
297 return ComplexColumnVector (multiply (a.data (), a_len, s), a_len); |
3
|
298 } |
|
299 |
|
300 ComplexColumnVector |
238
|
301 operator / (const Complex& s, const ColumnVector& a) |
3
|
302 { |
238
|
303 int a_len = a.length (); |
|
304 return ComplexColumnVector (divide (s, a.data (), a_len), a_len); |
3
|
305 } |
|
306 |
|
307 // column vector by row vector -> matrix operations |
|
308 |
|
309 Matrix |
238
|
310 operator * (const ColumnVector& v, const RowVector& a) |
3
|
311 { |
238
|
312 int len = v.length (); |
|
313 int a_len = a.length (); |
|
314 if (len != a_len) |
227
|
315 { |
|
316 (*current_liboctave_error_handler) |
|
317 ("nonconformant vector multiplication attempted"); |
|
318 return Matrix (); |
|
319 } |
3
|
320 |
|
321 if (len == 0) |
|
322 return Matrix (len, len, 0.0); |
|
323 |
|
324 char transa = 'N'; |
|
325 char transb = 'N'; |
|
326 double alpha = 1.0; |
|
327 double beta = 0.0; |
|
328 int anr = 1; |
|
329 |
238
|
330 double *c = new double [len * a_len]; |
3
|
331 |
238
|
332 F77_FCN (dgemm) (&transa, &transb, &len, &a_len, &anr, &alpha, |
|
333 v.data (), &len, a.data (), &anr, &beta, c, &len, |
|
334 1L, 1L); |
3
|
335 |
238
|
336 return Matrix (c, len, a_len); |
3
|
337 } |
|
338 |
|
339 ComplexMatrix |
238
|
340 operator * (const ColumnVector& v, const ComplexRowVector& a) |
3
|
341 { |
238
|
342 ComplexColumnVector tmp (v); |
3
|
343 return tmp * a; |
|
344 } |
|
345 |
238
|
346 ComplexColumnVector |
|
347 operator + (const ColumnVector& v, const ComplexColumnVector& a) |
3
|
348 { |
238
|
349 int len = v.length (); |
|
350 if (len != a.length ()) |
227
|
351 { |
|
352 (*current_liboctave_error_handler) |
|
353 ("nonconformant vector subtraction attempted"); |
|
354 return ComplexColumnVector (); |
|
355 } |
3
|
356 |
|
357 if (len == 0) |
|
358 return ComplexColumnVector (0); |
|
359 |
238
|
360 return ComplexColumnVector (add (v.data (), a.data (), len), len); |
3
|
361 } |
|
362 |
238
|
363 ComplexColumnVector |
|
364 operator - (const ColumnVector& v, const ComplexColumnVector& a) |
3
|
365 { |
238
|
366 int len = v.length (); |
|
367 if (len != a.length ()) |
227
|
368 { |
|
369 (*current_liboctave_error_handler) |
238
|
370 ("nonconformant vector subtraction attempted"); |
|
371 return ComplexColumnVector (); |
227
|
372 } |
3
|
373 |
|
374 if (len == 0) |
238
|
375 return ComplexColumnVector (0); |
3
|
376 |
238
|
377 return ComplexColumnVector (subtract (v.data (), a.data (), len), len); |
3
|
378 } |
|
379 |
|
380 ComplexColumnVector |
238
|
381 product (const ColumnVector& v, const ComplexColumnVector& a) |
3
|
382 { |
238
|
383 int len = v.length (); |
|
384 if (len != a.length ()) |
227
|
385 { |
|
386 (*current_liboctave_error_handler) |
|
387 ("nonconformant vector product attempted"); |
|
388 return ColumnVector (); |
|
389 } |
3
|
390 |
|
391 if (len == 0) |
|
392 return ComplexColumnVector (0); |
|
393 |
238
|
394 return ComplexColumnVector (multiply (v.data (), a.data (), len), len); |
3
|
395 } |
|
396 |
|
397 ComplexColumnVector |
238
|
398 quotient (const ColumnVector& v, const ComplexColumnVector& a) |
3
|
399 { |
238
|
400 int len = v.length (); |
|
401 if (len != a.length ()) |
227
|
402 { |
|
403 (*current_liboctave_error_handler) |
|
404 ("nonconformant vector quotient attempted"); |
|
405 return ColumnVector (); |
|
406 } |
3
|
407 |
|
408 if (len == 0) |
|
409 return ComplexColumnVector (0); |
|
410 |
238
|
411 return ComplexColumnVector (divide (v.data (), a.data (), len), len); |
3
|
412 } |
|
413 |
238
|
414 // other operations |
3
|
415 |
|
416 ColumnVector |
|
417 map (d_d_Mapper f, const ColumnVector& a) |
|
418 { |
|
419 ColumnVector b (a); |
|
420 b.map (f); |
|
421 return b; |
|
422 } |
|
423 |
|
424 void |
|
425 ColumnVector::map (d_d_Mapper f) |
|
426 { |
238
|
427 for (int i = 0; i < length (); i++) |
|
428 elem (i) = f (elem (i)); |
3
|
429 } |
|
430 |
|
431 double |
|
432 ColumnVector::min (void) const |
|
433 { |
238
|
434 int len = length (); |
3
|
435 if (len == 0) |
|
436 return 0.0; |
|
437 |
238
|
438 double res = elem (0); |
3
|
439 |
|
440 for (int i = 1; i < len; i++) |
238
|
441 if (elem (i) < res) |
|
442 res = elem (i); |
3
|
443 |
|
444 return res; |
|
445 } |
|
446 |
|
447 double |
|
448 ColumnVector::max (void) const |
|
449 { |
238
|
450 int len = length (); |
3
|
451 if (len == 0) |
|
452 return 0.0; |
|
453 |
238
|
454 double res = elem (0); |
3
|
455 |
|
456 for (int i = 1; i < len; i++) |
238
|
457 if (elem (i) > res) |
|
458 res = elem (i); |
3
|
459 |
|
460 return res; |
|
461 } |
|
462 |
|
463 ostream& |
|
464 operator << (ostream& os, const ColumnVector& a) |
|
465 { |
|
466 // int field_width = os.precision () + 7; |
238
|
467 for (int i = 0; i < a.length (); i++) |
|
468 os << /* setw (field_width) << */ a.elem (i) << "\n"; |
3
|
469 return os; |
|
470 } |
|
471 |
|
472 /* |
|
473 * Complex Column Vector class |
|
474 */ |
|
475 |
238
|
476 ComplexColumnVector::ComplexColumnVector (const ColumnVector& a) |
|
477 : Array<Complex> (a.length ()) |
3
|
478 { |
238
|
479 for (int i = 0; i < length (); i++) |
|
480 elem (i) = a.elem (i); |
3
|
481 } |
|
482 |
238
|
483 #if 0 |
3
|
484 ComplexColumnVector& |
|
485 ComplexColumnVector::resize (int n) |
|
486 { |
|
487 if (n < 0) |
227
|
488 { |
|
489 (*current_liboctave_error_handler) |
|
490 ("can't resize to negative dimension"); |
|
491 return *this; |
|
492 } |
3
|
493 |
|
494 Complex *new_data = (Complex *) NULL; |
|
495 if (n > 0) |
|
496 { |
|
497 new_data = new Complex [n]; |
|
498 int min_len = len < n ? len : n; |
|
499 |
|
500 for (int i = 0; i < min_len; i++) |
|
501 new_data[i] = data[i]; |
|
502 } |
|
503 |
|
504 delete [] data; |
|
505 len = n; |
|
506 data = new_data; |
|
507 |
|
508 return *this; |
|
509 } |
|
510 |
|
511 ComplexColumnVector& |
|
512 ComplexColumnVector::resize (int n, double val) |
|
513 { |
|
514 int old_len = len; |
|
515 resize (n); |
|
516 for (int i = old_len; i < len; i++) |
|
517 data[i] = val; |
|
518 |
|
519 return *this; |
|
520 } |
|
521 |
|
522 ComplexColumnVector& |
161
|
523 ComplexColumnVector::resize (int n, const Complex& val) |
3
|
524 { |
|
525 int old_len = len; |
|
526 resize (n); |
|
527 for (int i = old_len; i < len; i++) |
|
528 data[i] = val; |
|
529 |
|
530 return *this; |
|
531 } |
238
|
532 #endif |
3
|
533 |
|
534 int |
|
535 ComplexColumnVector::operator == (const ComplexColumnVector& a) const |
|
536 { |
238
|
537 int len = length (); |
|
538 if (len != a.length ()) |
3
|
539 return 0; |
238
|
540 return equal (data (), a.data (), len); |
3
|
541 } |
|
542 |
|
543 int |
|
544 ComplexColumnVector::operator != (const ComplexColumnVector& a) const |
|
545 { |
238
|
546 return !(*this == a); |
3
|
547 } |
|
548 |
|
549 // destructive insert/delete/reorder operations |
|
550 |
|
551 ComplexColumnVector& |
|
552 ComplexColumnVector::insert (const ColumnVector& a, int r) |
|
553 { |
238
|
554 int a_len = a.length (); |
|
555 if (r < 0 || r + a_len - 1 > length ()) |
227
|
556 { |
|
557 (*current_liboctave_error_handler) ("range error for insert"); |
|
558 return *this; |
|
559 } |
3
|
560 |
238
|
561 for (int i = 0; i < a_len; i++) |
|
562 elem (r+i) = a.elem (i); |
3
|
563 |
|
564 return *this; |
|
565 } |
|
566 |
|
567 ComplexColumnVector& |
|
568 ComplexColumnVector::insert (const ComplexColumnVector& a, int r) |
|
569 { |
238
|
570 int a_len = a.length (); |
|
571 if (r < 0 || r + a_len - 1 > length ()) |
227
|
572 { |
|
573 (*current_liboctave_error_handler) ("range error for insert"); |
|
574 return *this; |
|
575 } |
3
|
576 |
238
|
577 for (int i = 0; i < a_len; i++) |
|
578 elem (r+i) = a.elem (i); |
3
|
579 |
|
580 return *this; |
|
581 } |
|
582 |
|
583 ComplexColumnVector& |
|
584 ComplexColumnVector::fill (double val) |
|
585 { |
238
|
586 int len = length (); |
3
|
587 if (len > 0) |
238
|
588 for (int i = 0; i < len; i++) |
|
589 elem (i) = val; |
3
|
590 return *this; |
|
591 } |
|
592 |
|
593 ComplexColumnVector& |
161
|
594 ComplexColumnVector::fill (const Complex& val) |
3
|
595 { |
238
|
596 int len = length (); |
3
|
597 if (len > 0) |
238
|
598 for (int i = 0; i < len; i++) |
|
599 elem (i) = val; |
3
|
600 return *this; |
|
601 } |
|
602 |
|
603 ComplexColumnVector& |
|
604 ComplexColumnVector::fill (double val, int r1, int r2) |
|
605 { |
238
|
606 int len = length (); |
3
|
607 if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) |
227
|
608 { |
|
609 (*current_liboctave_error_handler) ("range error for fill"); |
|
610 return *this; |
|
611 } |
3
|
612 |
|
613 if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } |
|
614 |
|
615 for (int i = r1; i <= r2; i++) |
238
|
616 elem (i) = val; |
3
|
617 |
|
618 return *this; |
|
619 } |
|
620 |
|
621 ComplexColumnVector& |
161
|
622 ComplexColumnVector::fill (const Complex& val, int r1, int r2) |
3
|
623 { |
238
|
624 int len = length (); |
3
|
625 if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) |
227
|
626 { |
|
627 (*current_liboctave_error_handler) ("range error for fill"); |
|
628 return *this; |
|
629 } |
3
|
630 |
|
631 if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } |
|
632 |
|
633 for (int i = r1; i <= r2; i++) |
238
|
634 elem (i) = val; |
3
|
635 |
|
636 return *this; |
|
637 } |
|
638 |
|
639 ComplexColumnVector |
|
640 ComplexColumnVector::stack (const ColumnVector& a) const |
|
641 { |
238
|
642 int len = length (); |
3
|
643 int nr_insert = len; |
238
|
644 ComplexColumnVector retval (len + a.length ()); |
3
|
645 retval.insert (*this, 0); |
|
646 retval.insert (a, nr_insert); |
|
647 return retval; |
|
648 } |
|
649 |
|
650 ComplexColumnVector |
|
651 ComplexColumnVector::stack (const ComplexColumnVector& a) const |
|
652 { |
238
|
653 int len = length (); |
3
|
654 int nr_insert = len; |
238
|
655 ComplexColumnVector retval (len + a.length ()); |
3
|
656 retval.insert (*this, 0); |
|
657 retval.insert (a, nr_insert); |
|
658 return retval; |
|
659 } |
|
660 |
|
661 ComplexRowVector |
|
662 ComplexColumnVector::hermitian (void) const |
|
663 { |
238
|
664 int len = length (); |
|
665 return ComplexRowVector (conj_dup (data (), len), len); |
3
|
666 } |
|
667 |
|
668 ComplexRowVector |
|
669 ComplexColumnVector::transpose (void) const |
|
670 { |
238
|
671 int len = length (); |
|
672 return ComplexRowVector (dup (data (), len), len); |
3
|
673 } |
|
674 |
|
675 ColumnVector |
|
676 real (const ComplexColumnVector& a) |
|
677 { |
238
|
678 int a_len = a.length (); |
3
|
679 ColumnVector retval; |
238
|
680 if (a_len > 0) |
|
681 retval = ColumnVector (real_dup (a.data (), a_len), a_len); |
3
|
682 return retval; |
|
683 } |
|
684 |
|
685 ColumnVector |
|
686 imag (const ComplexColumnVector& a) |
|
687 { |
238
|
688 int a_len = a.length (); |
3
|
689 ColumnVector retval; |
238
|
690 if (a_len > 0) |
|
691 retval = ColumnVector (imag_dup (a.data (), a_len), a_len); |
3
|
692 return retval; |
|
693 } |
|
694 |
|
695 ComplexColumnVector |
|
696 conj (const ComplexColumnVector& a) |
|
697 { |
238
|
698 int a_len = a.length (); |
3
|
699 ComplexColumnVector retval; |
238
|
700 if (a_len > 0) |
|
701 retval = ComplexColumnVector (conj_dup (a.data (), a_len), a_len); |
3
|
702 return retval; |
|
703 } |
|
704 |
|
705 // resize is the destructive equivalent for this one |
|
706 |
|
707 ComplexColumnVector |
|
708 ComplexColumnVector::extract (int r1, int r2) const |
|
709 { |
|
710 if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } |
|
711 |
|
712 int new_r = r2 - r1 + 1; |
|
713 |
|
714 ComplexColumnVector result (new_r); |
|
715 |
|
716 for (int i = 0; i < new_r; i++) |
238
|
717 result.elem (i) = elem (r1+i); |
3
|
718 |
|
719 return result; |
|
720 } |
|
721 |
238
|
722 // column vector by column vector -> column vector operations |
|
723 |
|
724 ComplexColumnVector& |
|
725 ComplexColumnVector::operator += (const ColumnVector& a) |
|
726 { |
|
727 int len = length (); |
|
728 if (len != a.length ()) |
|
729 { |
|
730 (*current_liboctave_error_handler) |
|
731 ("nonconformant vector += operation attempted"); |
|
732 return *this; |
|
733 } |
|
734 |
|
735 if (len == 0) |
|
736 return *this; |
|
737 |
|
738 Complex *d = fortran_vec (); // Ensures only one reference to my privates! |
|
739 |
|
740 add2 (d, a.data (), len); |
|
741 return *this; |
|
742 } |
|
743 |
|
744 ComplexColumnVector& |
|
745 ComplexColumnVector::operator -= (const ColumnVector& a) |
|
746 { |
|
747 int len = length (); |
|
748 if (len != a.length ()) |
|
749 { |
|
750 (*current_liboctave_error_handler) |
|
751 ("nonconformant vector -= operation attempted"); |
|
752 return *this; |
|
753 } |
|
754 |
|
755 if (len == 0) |
|
756 return *this; |
|
757 |
|
758 Complex *d = fortran_vec (); // Ensures only one reference to my privates! |
|
759 |
|
760 subtract2 (d, a.data (), len); |
|
761 return *this; |
|
762 } |
|
763 |
|
764 ComplexColumnVector& |
|
765 ComplexColumnVector::operator += (const ComplexColumnVector& a) |
|
766 { |
|
767 int len = length (); |
|
768 |
|
769 if (len != a.length ()) |
|
770 { |
|
771 (*current_liboctave_error_handler) |
|
772 ("nonconformant vector += operation attempted"); |
|
773 return *this; |
|
774 } |
|
775 |
|
776 if (len == 0) |
|
777 return *this; |
|
778 |
|
779 Complex *d = fortran_vec (); // Ensures only one reference to my privates! |
|
780 |
|
781 add2 (d, a.data (), len); |
|
782 return *this; |
|
783 } |
|
784 |
|
785 ComplexColumnVector& |
|
786 ComplexColumnVector::operator -= (const ComplexColumnVector& a) |
|
787 { |
|
788 int len = length (); |
|
789 if (len != a.length ()) |
|
790 { |
|
791 (*current_liboctave_error_handler) |
|
792 ("nonconformant vector -= operation attempted"); |
|
793 return *this; |
|
794 } |
|
795 |
|
796 if (len == 0) |
|
797 return *this; |
|
798 |
|
799 Complex *d = fortran_vec (); // Ensures only one reference to my privates! |
|
800 |
|
801 subtract2 (d, a.data (), len); |
|
802 return *this; |
|
803 } |
|
804 |
3
|
805 // column vector by scalar -> column vector operations |
|
806 |
|
807 ComplexColumnVector |
238
|
808 operator + (const ComplexColumnVector& v, double s) |
3
|
809 { |
238
|
810 int len = v.length (); |
|
811 return ComplexColumnVector (add (v.data (), len, s), len); |
3
|
812 } |
|
813 |
|
814 ComplexColumnVector |
238
|
815 operator - (const ComplexColumnVector& v, double s) |
3
|
816 { |
238
|
817 int len = v.length (); |
|
818 return ComplexColumnVector (subtract (v.data (), len, s), len); |
3
|
819 } |
|
820 |
|
821 ComplexColumnVector |
238
|
822 operator * (const ComplexColumnVector& v, double s) |
3
|
823 { |
238
|
824 int len = v.length (); |
|
825 return ComplexColumnVector (multiply (v.data (), len, s), len); |
3
|
826 } |
|
827 |
|
828 ComplexColumnVector |
238
|
829 operator / (const ComplexColumnVector& v, double s) |
3
|
830 { |
238
|
831 int len = v.length (); |
|
832 return ComplexColumnVector (divide (v.data (), len, s), len); |
3
|
833 } |
|
834 |
|
835 // scalar by column vector -> column vector operations |
|
836 |
|
837 ComplexColumnVector |
|
838 operator + (double s, const ComplexColumnVector& a) |
|
839 { |
238
|
840 int a_len = a.length (); |
|
841 return ComplexColumnVector (add (a.data (), a_len, s), a_len); |
3
|
842 } |
|
843 |
|
844 ComplexColumnVector |
|
845 operator - (double s, const ComplexColumnVector& a) |
|
846 { |
238
|
847 int a_len = a.length (); |
|
848 return ComplexColumnVector (subtract (s, a.data (), a_len), a_len); |
3
|
849 } |
|
850 |
|
851 ComplexColumnVector |
|
852 operator * (double s, const ComplexColumnVector& a) |
|
853 { |
238
|
854 int a_len = a.length (); |
|
855 return ComplexColumnVector (multiply (a.data (), a_len, s), a_len); |
3
|
856 } |
|
857 |
|
858 ComplexColumnVector |
|
859 operator / (double s, const ComplexColumnVector& a) |
|
860 { |
238
|
861 int a_len = a.length (); |
|
862 return ComplexColumnVector (divide (s, a.data (), a_len), a_len); |
3
|
863 } |
|
864 |
|
865 // column vector by row vector -> matrix operations |
|
866 |
|
867 ComplexMatrix |
238
|
868 operator * (const ComplexColumnVector& v, const ComplexRowVector& a) |
3
|
869 { |
238
|
870 int len = v.length (); |
|
871 int a_len = a.length (); |
|
872 if (len != a_len) |
227
|
873 { |
|
874 (*current_liboctave_error_handler) |
|
875 ("nonconformant vector multiplication attempted"); |
|
876 return ComplexMatrix (); |
|
877 } |
3
|
878 |
|
879 if (len == 0) |
|
880 return ComplexMatrix (len, len, 0.0); |
|
881 |
|
882 char transa = 'N'; |
|
883 char transb = 'N'; |
|
884 Complex alpha (1.0); |
|
885 Complex beta (0.0); |
|
886 int anr = 1; |
|
887 |
238
|
888 Complex *c = new Complex [len * a_len]; |
3
|
889 |
238
|
890 F77_FCN (zgemm) (&transa, &transb, &len, &a_len, &anr, &alpha, |
|
891 v.data (), &len, a.data (), &anr, &beta, c, &len, |
|
892 1L, 1L); |
3
|
893 |
238
|
894 return ComplexMatrix (c, len, a_len); |
3
|
895 } |
|
896 |
|
897 // column vector by column vector -> column vector operations |
|
898 |
|
899 ComplexColumnVector |
238
|
900 operator + (const ComplexColumnVector& v, const ColumnVector& a) |
3
|
901 { |
238
|
902 int len = v.length (); |
|
903 if (len != a.length ()) |
227
|
904 { |
|
905 (*current_liboctave_error_handler) |
|
906 ("nonconformant vector addition attempted"); |
|
907 return ComplexColumnVector (); |
|
908 } |
3
|
909 |
|
910 if (len == 0) |
|
911 return ComplexColumnVector (0); |
|
912 |
238
|
913 return ComplexColumnVector (add (v.data (), a.data (), len), len); |
3
|
914 } |
|
915 |
|
916 ComplexColumnVector |
238
|
917 operator - (const ComplexColumnVector& v, const ColumnVector& a) |
3
|
918 { |
238
|
919 int len = v.length (); |
|
920 if (len != a.length ()) |
227
|
921 { |
|
922 (*current_liboctave_error_handler) |
|
923 ("nonconformant vector subtraction attempted"); |
|
924 return ComplexColumnVector (); |
|
925 } |
3
|
926 |
|
927 if (len == 0) |
|
928 return ComplexColumnVector (0); |
|
929 |
238
|
930 return ComplexColumnVector (subtract (v.data (), a.data (), len), len); |
3
|
931 } |
|
932 |
|
933 ComplexColumnVector |
238
|
934 product (const ComplexColumnVector& v, const ColumnVector& a) |
3
|
935 { |
238
|
936 int len = v.length (); |
|
937 if (len != a.length ()) |
227
|
938 { |
|
939 (*current_liboctave_error_handler) |
|
940 ("nonconformant vector product attempted"); |
|
941 return ComplexColumnVector (); |
|
942 } |
3
|
943 |
|
944 if (len == 0) |
|
945 return ComplexColumnVector (0); |
|
946 |
238
|
947 return ComplexColumnVector (multiply (v.data (), a.data (), len), len); |
3
|
948 } |
|
949 |
|
950 ComplexColumnVector |
238
|
951 quotient (const ComplexColumnVector& v, const ColumnVector& a) |
3
|
952 { |
238
|
953 int len = v.length (); |
|
954 if (len != a.length ()) |
227
|
955 { |
|
956 (*current_liboctave_error_handler) |
|
957 ("nonconformant vector quotient attempted"); |
|
958 return ComplexColumnVector (); |
|
959 } |
3
|
960 |
|
961 if (len == 0) |
|
962 return ComplexColumnVector (0); |
|
963 |
238
|
964 return ComplexColumnVector (divide (v.data (), a.data (), len), len); |
3
|
965 } |
|
966 |
238
|
967 // other operations |
3
|
968 |
|
969 ComplexColumnVector |
|
970 map (c_c_Mapper f, const ComplexColumnVector& a) |
|
971 { |
|
972 ComplexColumnVector b (a); |
|
973 b.map (f); |
|
974 return b; |
|
975 } |
|
976 |
|
977 ColumnVector |
|
978 map (d_c_Mapper f, const ComplexColumnVector& a) |
|
979 { |
238
|
980 int a_len = a.length (); |
|
981 ColumnVector b (a_len); |
|
982 for (int i = 0; i < a_len; i++) |
3
|
983 b.elem (i) = f (a.elem (i)); |
|
984 return b; |
|
985 } |
|
986 |
|
987 void |
|
988 ComplexColumnVector::map (c_c_Mapper f) |
|
989 { |
238
|
990 for (int i = 0; i < length (); i++) |
|
991 elem (i) = f (elem (i)); |
3
|
992 } |
|
993 |
|
994 Complex |
|
995 ComplexColumnVector::min (void) const |
|
996 { |
238
|
997 int len = length (); |
3
|
998 if (len == 0) |
|
999 return 0.0; |
|
1000 |
238
|
1001 Complex res = elem (0); |
3
|
1002 double absres = abs (res); |
|
1003 |
|
1004 for (int i = 1; i < len; i++) |
238
|
1005 if (abs (elem (i)) < absres) |
3
|
1006 { |
238
|
1007 res = elem (i); |
3
|
1008 absres = abs (res); |
|
1009 } |
|
1010 |
|
1011 return res; |
|
1012 } |
|
1013 |
|
1014 Complex |
|
1015 ComplexColumnVector::max (void) const |
|
1016 { |
238
|
1017 int len = length (); |
3
|
1018 if (len == 0) |
|
1019 return 0.0; |
|
1020 |
238
|
1021 Complex res = elem (0); |
3
|
1022 double absres = abs (res); |
|
1023 |
|
1024 for (int i = 1; i < len; i++) |
238
|
1025 if (abs (elem (i)) > absres) |
3
|
1026 { |
238
|
1027 res = elem (i); |
3
|
1028 absres = abs (res); |
|
1029 } |
|
1030 |
|
1031 return res; |
|
1032 } |
|
1033 |
|
1034 // i/o |
|
1035 |
|
1036 ostream& |
|
1037 operator << (ostream& os, const ComplexColumnVector& a) |
|
1038 { |
|
1039 // int field_width = os.precision () + 7; |
238
|
1040 for (int i = 0; i < a.length (); i++) |
|
1041 os << /* setw (field_width) << */ a.elem (i) << "\n"; |
3
|
1042 return os; |
|
1043 } |
|
1044 |
|
1045 /* |
|
1046 ;;; Local Variables: *** |
|
1047 ;;; mode: C++ *** |
|
1048 ;;; page-delimiter: "^/\\*" *** |
|
1049 ;;; End: *** |
|
1050 */ |