3200
|
1 ## Copyright (C) 1996, 1997 Kurt Hornik |
|
2 ## |
|
3 ## This program is free software; you can redistribute it and/or modify |
|
4 ## it under the terms of the GNU General Public License as published by |
|
5 ## the Free Software Foundation; either version 2, or (at your option) |
|
6 ## any later version. |
|
7 ## |
|
8 ## This program is distributed in the hope that it will be useful, but |
|
9 ## WITHOUT ANY WARRANTY; without even the implied warranty of |
|
10 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
11 ## General Public License for more details. |
|
12 ## |
|
13 ## You should have received a copy of the GNU General Public License |
|
14 ## along with this file. If not, write to the Free Software Foundation, |
|
15 ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
|
16 |
|
17 ## usage: manova (Y, g) |
|
18 ## |
|
19 ## Performs a one-way multivariate analysis of variance (MANOVA). The |
|
20 ## goal is to test whether the p-dimensional population means of data |
|
21 ## taken from k different groups are all equal. All data are assumed |
|
22 ## drawn independently from p-dimensional normal distributions with the |
|
23 ## same covariance matrix. |
|
24 ## |
|
25 ## Y is the data matrix. As usual, rows are observations and columns |
|
26 ## are variables. g is the vector of corresponding group labels (e.g., |
|
27 ## numbers from 1 to k), so that necessarily, length (g) must be the |
|
28 ## same as rows (Y). |
|
29 ## |
|
30 ## The LR test statistic (Wilks' Lambda) and approximate p-values are |
|
31 ## computed and displayed. |
|
32 |
|
33 ## Three test statistics (Wilks, Hotelling-Lawley, and Pillai-Bartlett) |
|
34 ## and corresponding approximate p-values are calculated and displayed. |
|
35 ## (Currently NOT because the f_cdf respectively betai code is too bad.) |
|
36 |
|
37 ## Author: TF <Thomas.Fuereder@ci.tuwien.ac.at> |
|
38 ## Adapted-By: KH <Kurt.Hornik@ci.tuwien.ac.at> |
|
39 ## Description: One-way multivariate analysis of variance (MANOVA) |
|
40 |
|
41 function manova (Y, g) |
|
42 |
|
43 if (nargin != 2) |
|
44 usage ("manova (Y, g)"); |
|
45 endif |
|
46 |
|
47 if (is_vector (Y)) |
|
48 error ("manova: Y must not be a vector"); |
|
49 endif |
|
50 |
|
51 [n, p] = size (Y); |
|
52 |
|
53 if (!is_vector (g) || (length (g) != n)) |
|
54 error ("manova: g must be a vector of length rows (Y)"); |
|
55 endif |
|
56 |
|
57 s = sort (g); |
|
58 i = find (s (2:n) > s(1:(n-1))); |
|
59 k = length (i) + 1; |
|
60 |
|
61 if (k == 1) |
|
62 error ("manova: there should be at least 2 groups"); |
|
63 else |
|
64 group_label = s ([1, reshape (i, 1, k - 1) + 1]); |
|
65 endif |
|
66 |
|
67 Y = Y - ones (n, 1) * mean (Y); |
|
68 SST = Y' * Y; |
|
69 |
|
70 s = zeros (1, p); |
|
71 SSB = zeros (p, p); |
|
72 for i = 1 : k; |
|
73 v = Y (find (g == group_label (i)), :); |
|
74 s = sum (v); |
|
75 SSB = SSB + s' * s / rows (v); |
|
76 endfor |
|
77 n_b = k - 1; |
|
78 |
|
79 SSW = SST - SSB; |
|
80 n_w = n - k; |
|
81 |
|
82 l = real (eig (SSB / SSW)); |
|
83 l (l < eps) = 0; |
|
84 |
|
85 ## Wilks' Lambda |
|
86 ## ============= |
|
87 |
|
88 Lambda = prod (1 ./ (1 + l)); |
|
89 |
|
90 delta = n_w + n_b - (p + n_b + 1) / 2 |
|
91 df_num = p * n_b |
|
92 W_pval_1 = 1 - chisquare_cdf (- delta * log (Lambda), df_num); |
|
93 |
|
94 if (p < 3) |
|
95 eta = p; |
|
96 else |
|
97 eta = sqrt ((p^2 * n_b^2 - 4) / (p^2 + n_b^2 - 5)) |
|
98 endif |
|
99 |
|
100 df_den = delta * eta - df_num / 2 + 1 |
|
101 |
|
102 WT = exp (- log (Lambda) / eta) - 1 |
|
103 W_pval_2 = 1 - f_cdf (WT * df_den / df_num, df_num, df_den); |
|
104 |
|
105 if (0) |
|
106 |
|
107 ## Hotelling-Lawley Test |
|
108 ## ===================== |
|
109 |
|
110 HL = sum (l); |
|
111 |
|
112 theta = min (p, n_b); |
|
113 u = (abs (p - n_b) - 1) / 2; |
|
114 v = (n_w - p - 1) / 2; |
|
115 |
|
116 df_num = theta * (2 * u + theta + 1); |
|
117 df_den = 2 * (theta * v + 1); |
|
118 |
|
119 HL_pval = 1 - f_cdf (HL * df_den / df_num, df_num, df_den); |
|
120 |
|
121 ## Pillai-Bartlett |
|
122 ## =============== |
|
123 |
|
124 PB = sum (l ./ (1 + l)); |
|
125 |
|
126 df_den = theta * (2 * v + theta + 1); |
|
127 PB_pval = 1 - f_cdf (PB * df_den / df_num, df_num, df_den); |
|
128 |
|
129 printf ("\n"); |
|
130 printf ("One-way MANOVA Table:\n"); |
|
131 printf ("\n"); |
|
132 printf ("Test Test Statistic Approximate p\n"); |
|
133 printf ("**************************************************\n"); |
|
134 printf ("Wilks %10.4f %10.9f \n", Lambda, W_pval_1); |
|
135 printf (" %10.9f \n", W_pval_2); |
|
136 printf ("Hotelling-Lawley %10.4f %10.9f \n", HL, HL_pval); |
|
137 printf ("Pillai-Bartlett %10.4f %10.9f \n", PB, PB_pval); |
|
138 printf ("\n"); |
|
139 |
|
140 endif |
|
141 |
|
142 printf ("\n"); |
|
143 printf ("MANOVA Results:\n"); |
|
144 printf ("\n"); |
|
145 printf ("# of groups: %d\n", k); |
|
146 printf ("# of samples: %d\n", n); |
|
147 printf ("# of variables: %d\n", p); |
|
148 printf ("\n"); |
|
149 printf ("Wilks' Lambda: %5.4f\n", Lambda); |
|
150 printf ("Approximate p: %10.9f (chisquare approximation)\n", W_pval_1); |
|
151 printf (" %10.9f (F approximation)\n", W_pval_2); |
|
152 printf ("\n"); |
|
153 |
|
154 endfunction |