4514
|
1 // N-D Array manipulations. |
|
2 /* |
|
3 |
|
4 Copyright (C) 1996, 1997 John W. Eaton |
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
|
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
|
21 |
|
22 */ |
|
23 |
|
24 #if defined (__GNUG__) && defined (USE_PRAGMA_INTERFACE_IMPLEMENTATION) |
|
25 #pragma implementation |
|
26 #endif |
|
27 |
|
28 #ifdef HAVE_CONFIG_H |
|
29 #include <config.h> |
|
30 #endif |
|
31 |
4687
|
32 #include <cfloat> |
4780
|
33 #include <vector> |
4687
|
34 |
4588
|
35 #include "Array-util.h" |
4514
|
36 #include "CNDArray.h" |
|
37 #include "mx-base.h" |
4773
|
38 #include "f77-fcn.h" |
4514
|
39 #include "lo-ieee.h" |
4687
|
40 #include "lo-mappers.h" |
4514
|
41 |
4773
|
42 #if defined (HAVE_FFTW3) |
4780
|
43 #include "oct-fftw.h" |
4773
|
44 #else |
|
45 extern "C" |
|
46 { |
|
47 // Note that the original complex fft routines were not written for |
|
48 // double complex arguments. They have been modified by adding an |
|
49 // implicit double precision (a-h,o-z) statement at the beginning of |
|
50 // each subroutine. |
|
51 |
|
52 F77_RET_T |
|
53 F77_FUNC (cffti, CFFTI) (const int&, Complex*); |
|
54 |
|
55 F77_RET_T |
|
56 F77_FUNC (cfftf, CFFTF) (const int&, Complex*, Complex*); |
|
57 |
|
58 F77_RET_T |
|
59 F77_FUNC (cfftb, CFFTB) (const int&, Complex*, Complex*); |
|
60 } |
|
61 #endif |
|
62 |
|
63 #if defined (HAVE_FFTW3) |
|
64 ComplexNDArray |
|
65 ComplexNDArray::fourier (int dim) const |
|
66 { |
|
67 dim_vector dv = dims (); |
|
68 |
|
69 if (dim > dv.length () || dim < 0) |
|
70 return ComplexNDArray (); |
|
71 |
|
72 int stride = 1; |
|
73 int n = dv(dim); |
|
74 |
|
75 for (int i = 0; i < dim; i++) |
|
76 stride *= dv(i); |
|
77 |
|
78 int howmany = numel () / dv (dim); |
|
79 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
80 int nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
81 int dist = (stride == 1 ? n : 1); |
|
82 |
|
83 const Complex *in (fortran_vec ()); |
|
84 ComplexNDArray retval (dv); |
|
85 Complex *out (retval.fortran_vec ()); |
|
86 |
|
87 // Need to be careful here about the distance between fft's |
|
88 for (int k = 0; k < nloop; k++) |
|
89 octave_fftw::fft (in + k * stride * n, out + k * stride * n, |
|
90 n, howmany, stride, dist); |
|
91 |
|
92 return retval; |
|
93 } |
|
94 |
|
95 ComplexNDArray |
4816
|
96 ComplexNDArray::ifourier (int dim) const |
4773
|
97 { |
|
98 dim_vector dv = dims (); |
|
99 |
|
100 if (dim > dv.length () || dim < 0) |
|
101 return ComplexNDArray (); |
|
102 |
|
103 int stride = 1; |
|
104 int n = dv(dim); |
|
105 |
|
106 for (int i = 0; i < dim; i++) |
|
107 stride *= dv(i); |
|
108 |
|
109 int howmany = numel () / dv (dim); |
|
110 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
111 int nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
112 int dist = (stride == 1 ? n : 1); |
|
113 |
|
114 const Complex *in (fortran_vec ()); |
|
115 ComplexNDArray retval (dv); |
|
116 Complex *out (retval.fortran_vec ()); |
|
117 |
|
118 // Need to be careful here about the distance between fft's |
|
119 for (int k = 0; k < nloop; k++) |
|
120 octave_fftw::ifft (in + k * stride * n, out + k * stride * n, |
|
121 n, howmany, stride, dist); |
|
122 |
|
123 return retval; |
|
124 } |
|
125 |
|
126 ComplexNDArray |
|
127 ComplexNDArray::fourier2d (void) const |
|
128 { |
|
129 dim_vector dv = dims(); |
|
130 if (dv.length () < 2) |
|
131 return ComplexNDArray (); |
|
132 |
|
133 dim_vector dv2(dv(0), dv(1)); |
|
134 const Complex *in = fortran_vec (); |
|
135 ComplexNDArray retval (dv); |
|
136 Complex *out = retval.fortran_vec (); |
|
137 int howmany = numel() / dv(0) / dv(1); |
|
138 int dist = dv(0) * dv(1); |
|
139 |
|
140 for (int i=0; i < howmany; i++) |
|
141 octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); |
|
142 |
|
143 return retval; |
|
144 } |
|
145 |
|
146 ComplexNDArray |
|
147 ComplexNDArray::ifourier2d (void) const |
|
148 { |
|
149 dim_vector dv = dims(); |
|
150 if (dv.length () < 2) |
|
151 return ComplexNDArray (); |
|
152 |
|
153 dim_vector dv2(dv(0), dv(1)); |
|
154 const Complex *in = fortran_vec (); |
|
155 ComplexNDArray retval (dv); |
|
156 Complex *out = retval.fortran_vec (); |
|
157 int howmany = numel() / dv(0) / dv(1); |
|
158 int dist = dv(0) * dv(1); |
|
159 |
|
160 for (int i=0; i < howmany; i++) |
|
161 octave_fftw::ifftNd (in + i*dist, out + i*dist, 2, dv2); |
|
162 |
|
163 return retval; |
|
164 } |
|
165 |
|
166 ComplexNDArray |
|
167 ComplexNDArray::fourierNd (void) const |
|
168 { |
|
169 dim_vector dv = dims (); |
|
170 int rank = dv.length (); |
|
171 |
|
172 const Complex *in (fortran_vec ()); |
|
173 ComplexNDArray retval (dv); |
|
174 Complex *out (retval.fortran_vec ()); |
|
175 |
|
176 octave_fftw::fftNd (in, out, rank, dv); |
|
177 |
|
178 return retval; |
|
179 } |
|
180 |
|
181 ComplexNDArray |
|
182 ComplexNDArray::ifourierNd (void) const |
|
183 { |
|
184 dim_vector dv = dims (); |
|
185 int rank = dv.length (); |
|
186 |
|
187 const Complex *in (fortran_vec ()); |
|
188 ComplexNDArray retval (dv); |
|
189 Complex *out (retval.fortran_vec ()); |
|
190 |
|
191 octave_fftw::ifftNd (in, out, rank, dv); |
|
192 |
|
193 return retval; |
|
194 } |
|
195 |
|
196 #else |
|
197 ComplexNDArray |
|
198 ComplexNDArray::fourier (int dim) const |
|
199 { |
|
200 dim_vector dv = dims (); |
|
201 |
|
202 if (dim > dv.length () || dim < 0) |
|
203 return ComplexNDArray (); |
|
204 |
|
205 ComplexNDArray retval (dv); |
|
206 int npts = dv(dim); |
|
207 int nn = 4*npts+15; |
|
208 Array<Complex> wsave (nn); |
|
209 Complex *pwsave = wsave.fortran_vec (); |
|
210 |
|
211 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
212 |
|
213 int stride = 1; |
|
214 |
|
215 for (int i = 0; i < dim; i++) |
|
216 stride *= dv(i); |
|
217 |
|
218 int howmany = numel () / npts; |
|
219 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
220 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
221 int dist = (stride == 1 ? npts : 1); |
|
222 |
|
223 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
224 |
|
225 for (int k = 0; k < nloop; k++) |
|
226 { |
|
227 for (int j = 0; j < howmany; j++) |
|
228 { |
|
229 OCTAVE_QUIT; |
|
230 |
|
231 for (int i = 0; i < npts; i++) |
|
232 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
233 |
|
234 F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); |
|
235 |
|
236 for (int i = 0; i < npts; i++) |
|
237 retval ((i + k*npts)*stride + j*dist) = tmp[i]; |
|
238 } |
|
239 } |
|
240 |
|
241 return retval; |
|
242 } |
|
243 |
|
244 ComplexNDArray |
|
245 ComplexNDArray::ifourier (int dim) const |
|
246 { |
|
247 dim_vector dv = dims (); |
|
248 |
|
249 if (dim > dv.length () || dim < 0) |
|
250 return ComplexNDArray (); |
|
251 |
|
252 ComplexNDArray retval (dv); |
|
253 int npts = dv(dim); |
|
254 int nn = 4*npts+15; |
|
255 Array<Complex> wsave (nn); |
|
256 Complex *pwsave = wsave.fortran_vec (); |
|
257 |
|
258 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
259 |
|
260 int stride = 1; |
|
261 |
|
262 for (int i = 0; i < dim; i++) |
|
263 stride *= dv(i); |
|
264 |
|
265 int howmany = numel () / npts; |
|
266 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
267 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
268 int dist = (stride == 1 ? npts : 1); |
|
269 |
|
270 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
271 |
|
272 for (int k = 0; k < nloop; k++) |
|
273 { |
|
274 for (int j = 0; j < howmany; j++) |
|
275 { |
|
276 OCTAVE_QUIT; |
|
277 |
|
278 for (int i = 0; i < npts; i++) |
|
279 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
280 |
|
281 F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); |
|
282 |
|
283 for (int i = 0; i < npts; i++) |
|
284 retval ((i + k*npts)*stride + j*dist) = tmp[i] / |
|
285 static_cast<double> (npts); |
|
286 } |
|
287 } |
|
288 |
|
289 return retval; |
|
290 } |
|
291 |
|
292 ComplexNDArray |
|
293 ComplexNDArray::fourier2d (void) const |
|
294 { |
|
295 dim_vector dv = dims (); |
|
296 dim_vector dv2 (dv(0), dv(1)); |
|
297 int rank = 2; |
|
298 ComplexNDArray retval (*this); |
|
299 int stride = 1; |
|
300 |
|
301 for (int i = 0; i < rank; i++) |
|
302 { |
|
303 int npts = dv2(i); |
|
304 int nn = 4*npts+15; |
|
305 Array<Complex> wsave (nn); |
|
306 Complex *pwsave = wsave.fortran_vec (); |
|
307 Array<Complex> row (npts); |
|
308 Complex *prow = row.fortran_vec (); |
|
309 |
|
310 int howmany = numel () / npts; |
|
311 howmany = (stride == 1 ? howmany : |
|
312 (howmany > stride ? stride : howmany)); |
|
313 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
314 int dist = (stride == 1 ? npts : 1); |
|
315 |
|
316 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
317 |
|
318 for (int k = 0; k < nloop; k++) |
|
319 { |
|
320 for (int j = 0; j < howmany; j++) |
|
321 { |
|
322 OCTAVE_QUIT; |
|
323 |
|
324 for (int l = 0; l < npts; l++) |
|
325 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
326 |
|
327 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
328 |
|
329 for (int l = 0; l < npts; l++) |
|
330 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
331 } |
|
332 } |
|
333 |
|
334 stride *= dv2(i); |
|
335 } |
|
336 |
|
337 return retval; |
|
338 } |
|
339 |
|
340 ComplexNDArray |
|
341 ComplexNDArray::ifourier2d (void) const |
|
342 { |
|
343 dim_vector dv = dims(); |
|
344 dim_vector dv2 (dv(0), dv(1)); |
|
345 int rank = 2; |
|
346 ComplexNDArray retval (*this); |
|
347 int stride = 1; |
|
348 |
|
349 for (int i = 0; i < rank; i++) |
|
350 { |
|
351 int npts = dv2(i); |
|
352 int nn = 4*npts+15; |
|
353 Array<Complex> wsave (nn); |
|
354 Complex *pwsave = wsave.fortran_vec (); |
|
355 Array<Complex> row (npts); |
|
356 Complex *prow = row.fortran_vec (); |
|
357 |
|
358 int howmany = numel () / npts; |
|
359 howmany = (stride == 1 ? howmany : |
|
360 (howmany > stride ? stride : howmany)); |
|
361 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
362 int dist = (stride == 1 ? npts : 1); |
|
363 |
|
364 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
365 |
|
366 for (int k = 0; k < nloop; k++) |
|
367 { |
|
368 for (int j = 0; j < howmany; j++) |
|
369 { |
|
370 OCTAVE_QUIT; |
|
371 |
|
372 for (int l = 0; l < npts; l++) |
|
373 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
374 |
|
375 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
376 |
|
377 for (int l = 0; l < npts; l++) |
|
378 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
379 static_cast<double> (npts); |
|
380 } |
|
381 } |
|
382 |
|
383 stride *= dv2(i); |
|
384 } |
|
385 |
|
386 return retval; |
|
387 } |
|
388 |
|
389 ComplexNDArray |
|
390 ComplexNDArray::fourierNd (void) const |
|
391 { |
|
392 dim_vector dv = dims (); |
|
393 int rank = dv.length (); |
|
394 ComplexNDArray retval (*this); |
|
395 int stride = 1; |
|
396 |
|
397 for (int i = 0; i < rank; i++) |
|
398 { |
|
399 int npts = dv(i); |
|
400 int nn = 4*npts+15; |
|
401 Array<Complex> wsave (nn); |
|
402 Complex *pwsave = wsave.fortran_vec (); |
|
403 Array<Complex> row (npts); |
|
404 Complex *prow = row.fortran_vec (); |
|
405 |
|
406 int howmany = numel () / npts; |
|
407 howmany = (stride == 1 ? howmany : |
|
408 (howmany > stride ? stride : howmany)); |
|
409 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
410 int dist = (stride == 1 ? npts : 1); |
|
411 |
|
412 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
413 |
|
414 for (int k = 0; k < nloop; k++) |
|
415 { |
|
416 for (int j = 0; j < howmany; j++) |
|
417 { |
|
418 OCTAVE_QUIT; |
|
419 |
|
420 for (int l = 0; l < npts; l++) |
|
421 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
422 |
|
423 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
424 |
|
425 for (int l = 0; l < npts; l++) |
|
426 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
427 } |
|
428 } |
|
429 |
|
430 stride *= dv(i); |
|
431 } |
|
432 |
|
433 return retval; |
|
434 } |
|
435 |
|
436 ComplexNDArray |
|
437 ComplexNDArray::ifourierNd (void) const |
|
438 { |
|
439 dim_vector dv = dims (); |
|
440 int rank = dv.length (); |
|
441 ComplexNDArray retval (*this); |
|
442 int stride = 1; |
|
443 |
|
444 for (int i = 0; i < rank; i++) |
|
445 { |
|
446 int npts = dv(i); |
|
447 int nn = 4*npts+15; |
|
448 Array<Complex> wsave (nn); |
|
449 Complex *pwsave = wsave.fortran_vec (); |
|
450 Array<Complex> row (npts); |
|
451 Complex *prow = row.fortran_vec (); |
|
452 |
|
453 int howmany = numel () / npts; |
|
454 howmany = (stride == 1 ? howmany : |
|
455 (howmany > stride ? stride : howmany)); |
|
456 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
457 int dist = (stride == 1 ? npts : 1); |
|
458 |
|
459 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
460 |
|
461 for (int k = 0; k < nloop; k++) |
|
462 { |
|
463 for (int j = 0; j < howmany; j++) |
|
464 { |
|
465 OCTAVE_QUIT; |
|
466 |
|
467 for (int l = 0; l < npts; l++) |
|
468 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
469 |
|
470 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
471 |
|
472 for (int l = 0; l < npts; l++) |
|
473 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
474 static_cast<double> (npts); |
|
475 } |
|
476 } |
|
477 |
|
478 stride *= dv(i); |
|
479 } |
|
480 |
|
481 return retval; |
|
482 } |
|
483 |
|
484 #endif |
|
485 |
4543
|
486 // unary operations |
|
487 |
|
488 boolNDArray |
|
489 ComplexNDArray::operator ! (void) const |
|
490 { |
|
491 boolNDArray b (dims ()); |
|
492 |
|
493 for (int i = 0; i < length (); i++) |
|
494 b.elem (i) = elem (i) != 0.0; |
|
495 |
|
496 return b; |
|
497 } |
|
498 |
4514
|
499 // XXX FIXME XXX -- this is not quite the right thing. |
|
500 |
4687
|
501 bool |
|
502 ComplexNDArray::any_element_is_inf_or_nan (void) const |
|
503 { |
|
504 int nel = nelem (); |
|
505 |
|
506 for (int i = 0; i < nel; i++) |
|
507 { |
|
508 Complex val = elem (i); |
|
509 if (xisinf (val) || xisnan (val)) |
|
510 return true; |
|
511 } |
|
512 return false; |
|
513 } |
|
514 |
|
515 // Return true if no elements have imaginary components. |
|
516 |
|
517 bool |
|
518 ComplexNDArray::all_elements_are_real (void) const |
|
519 { |
|
520 int nel = nelem (); |
|
521 |
|
522 for (int i = 0; i < nel; i++) |
|
523 { |
|
524 double ip = imag (elem (i)); |
|
525 |
|
526 if (ip != 0.0 || lo_ieee_signbit (ip)) |
|
527 return false; |
|
528 } |
|
529 |
|
530 return true; |
|
531 } |
|
532 |
|
533 // Return nonzero if any element of CM has a non-integer real or |
|
534 // imaginary part. Also extract the largest and smallest (real or |
|
535 // imaginary) values and return them in MAX_VAL and MIN_VAL. |
|
536 |
|
537 bool |
|
538 ComplexNDArray::all_integers (double& max_val, double& min_val) const |
|
539 { |
|
540 int nel = nelem (); |
|
541 |
|
542 if (nel > 0) |
|
543 { |
|
544 Complex val = elem (0); |
|
545 |
|
546 double r_val = real (val); |
|
547 double i_val = imag (val); |
|
548 |
|
549 max_val = r_val; |
|
550 min_val = r_val; |
|
551 |
|
552 if (i_val > max_val) |
|
553 max_val = i_val; |
|
554 |
|
555 if (i_val < max_val) |
|
556 min_val = i_val; |
|
557 } |
|
558 else |
|
559 return false; |
|
560 |
|
561 for (int i = 0; i < nel; i++) |
|
562 { |
|
563 Complex val = elem (i); |
|
564 |
|
565 double r_val = real (val); |
|
566 double i_val = imag (val); |
|
567 |
|
568 if (r_val > max_val) |
|
569 max_val = r_val; |
|
570 |
|
571 if (i_val > max_val) |
|
572 max_val = i_val; |
|
573 |
|
574 if (r_val < min_val) |
|
575 min_val = r_val; |
|
576 |
|
577 if (i_val < min_val) |
|
578 min_val = i_val; |
|
579 |
|
580 if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val) |
|
581 return false; |
|
582 } |
|
583 |
|
584 return true; |
|
585 } |
|
586 |
|
587 bool |
|
588 ComplexNDArray::too_large_for_float (void) const |
|
589 { |
|
590 int nel = nelem (); |
|
591 |
|
592 for (int i = 0; i < nel; i++) |
|
593 { |
|
594 Complex val = elem (i); |
|
595 |
|
596 double r_val = real (val); |
|
597 double i_val = imag (val); |
|
598 |
|
599 if (r_val > FLT_MAX |
|
600 || i_val > FLT_MAX |
|
601 || r_val < FLT_MIN |
|
602 || i_val < FLT_MIN) |
|
603 return true; |
|
604 } |
|
605 |
|
606 return false; |
|
607 } |
|
608 |
4556
|
609 boolNDArray |
4514
|
610 ComplexNDArray::all (int dim) const |
|
611 { |
4569
|
612 MX_ND_ANY_ALL_REDUCTION |
|
613 (MX_ND_ALL_EVAL (elem (iter_idx) == Complex (0, 0)), true); |
4514
|
614 } |
|
615 |
4556
|
616 boolNDArray |
4514
|
617 ComplexNDArray::any (int dim) const |
|
618 { |
4569
|
619 MX_ND_ANY_ALL_REDUCTION |
|
620 (MX_ND_ANY_EVAL (elem (iter_idx) != Complex (0, 0)), false); |
|
621 } |
|
622 |
4584
|
623 ComplexNDArray |
4569
|
624 ComplexNDArray::cumprod (int dim) const |
|
625 { |
4584
|
626 MX_ND_CUMULATIVE_OP (ComplexNDArray, Complex, Complex (1, 0), *); |
4569
|
627 } |
|
628 |
4584
|
629 ComplexNDArray |
4569
|
630 ComplexNDArray::cumsum (int dim) const |
|
631 { |
4584
|
632 MX_ND_CUMULATIVE_OP (ComplexNDArray, Complex, Complex (0, 0), +); |
4569
|
633 } |
|
634 |
|
635 ComplexNDArray |
|
636 ComplexNDArray::prod (int dim) const |
|
637 { |
|
638 MX_ND_COMPLEX_OP_REDUCTION (*= elem (iter_idx), Complex (1, 0)); |
|
639 } |
|
640 |
|
641 ComplexNDArray |
|
642 ComplexNDArray::sumsq (int dim) const |
|
643 { |
|
644 MX_ND_COMPLEX_OP_REDUCTION |
|
645 (+= imag (elem (iter_idx)) |
|
646 ? elem (iter_idx) * conj (elem (iter_idx)) |
|
647 : std::pow (elem (iter_idx), 2), Complex (0, 0)); |
|
648 } |
|
649 |
|
650 ComplexNDArray |
|
651 ComplexNDArray::sum (int dim) const |
|
652 { |
|
653 MX_ND_COMPLEX_OP_REDUCTION (+= elem (iter_idx), Complex (0, 0)); |
|
654 } |
|
655 |
4915
|
656 ComplexNDArray |
|
657 concat (const ComplexNDArray& ra, const ComplexNDArray& rb, |
|
658 const Array<int>& ra_idx) |
|
659 { |
|
660 ComplexNDArray retval (ra); |
4940
|
661 if (rb.numel () > 0) |
4915
|
662 retval.insert (rb, ra_idx); |
|
663 return retval; |
|
664 } |
|
665 |
|
666 ComplexNDArray |
|
667 concat (const ComplexNDArray& ra, const NDArray& rb, const Array<int>& ra_idx) |
4758
|
668 { |
4915
|
669 ComplexNDArray retval (ra); |
|
670 ComplexNDArray tmp (rb); |
4940
|
671 if (rb.numel () > 0) |
4915
|
672 retval.insert (tmp, ra_idx); |
|
673 return retval; |
|
674 } |
|
675 |
|
676 ComplexNDArray |
|
677 concat (const NDArray& ra, const ComplexNDArray& rb, const Array<int>& ra_idx) |
|
678 { |
|
679 ComplexNDArray retval (ra); |
4940
|
680 if (rb.numel () > 0) |
4915
|
681 retval.insert (rb, ra_idx); |
|
682 return retval; |
4758
|
683 } |
|
684 |
4844
|
685 static const Complex Complex_NaN_result (octave_NaN, octave_NaN); |
|
686 |
|
687 ComplexNDArray |
|
688 ComplexNDArray::max (int dim) const |
|
689 { |
|
690 ArrayN<int> dummy_idx; |
|
691 return max (dummy_idx, dim); |
|
692 } |
|
693 |
|
694 ComplexNDArray |
|
695 ComplexNDArray::max (ArrayN<int>& idx_arg, int dim) const |
|
696 { |
|
697 dim_vector dv = dims (); |
|
698 dim_vector dr = dims (); |
|
699 |
|
700 if (dv.numel () == 0 || dim > dv.length () || dim < 0) |
|
701 return ComplexNDArray (); |
|
702 |
|
703 dr(dim) = 1; |
|
704 |
|
705 ComplexNDArray result (dr); |
|
706 idx_arg.resize (dr); |
|
707 |
|
708 int x_stride = 1; |
|
709 int x_len = dv(dim); |
|
710 for (int i = 0; i < dim; i++) |
|
711 x_stride *= dv(i); |
|
712 |
|
713 for (int i = 0; i < dr.numel (); i++) |
|
714 { |
|
715 int x_offset; |
|
716 if (x_stride == 1) |
|
717 x_offset = i * x_len; |
|
718 else |
|
719 { |
|
720 int x_offset2 = 0; |
|
721 x_offset = i; |
|
722 while (x_offset >= x_stride) |
|
723 { |
|
724 x_offset -= x_stride; |
|
725 x_offset2++; |
|
726 } |
|
727 x_offset += x_offset2 * x_stride * x_len; |
|
728 } |
|
729 |
|
730 int idx_j; |
|
731 |
|
732 Complex tmp_max; |
|
733 |
|
734 double abs_max = octave_NaN; |
|
735 |
|
736 for (idx_j = 0; idx_j < x_len; idx_j++) |
|
737 { |
|
738 tmp_max = elem (idx_j * x_stride + x_offset); |
|
739 |
|
740 if (! octave_is_NaN_or_NA (tmp_max)) |
|
741 { |
|
742 abs_max = ::abs(tmp_max); |
|
743 break; |
|
744 } |
|
745 } |
|
746 |
|
747 for (int j = idx_j+1; j < x_len; j++) |
|
748 { |
|
749 Complex tmp = elem (j * x_stride + x_offset); |
|
750 |
|
751 if (octave_is_NaN_or_NA (tmp)) |
|
752 continue; |
|
753 |
|
754 double abs_tmp = ::abs (tmp); |
|
755 |
|
756 if (abs_tmp > abs_max) |
|
757 { |
|
758 idx_j = j; |
|
759 tmp_max = tmp; |
|
760 abs_max = abs_tmp; |
|
761 } |
|
762 } |
|
763 |
|
764 if (octave_is_NaN_or_NA (tmp_max)) |
|
765 { |
|
766 result.elem (i) = Complex_NaN_result; |
|
767 idx_arg.elem (i) = 0; |
|
768 } |
|
769 else |
|
770 { |
|
771 result.elem (i) = tmp_max; |
|
772 idx_arg.elem (i) = idx_j; |
|
773 } |
|
774 } |
|
775 |
|
776 return result; |
|
777 } |
|
778 |
|
779 ComplexNDArray |
|
780 ComplexNDArray::min (int dim) const |
|
781 { |
|
782 ArrayN<int> dummy_idx; |
|
783 return min (dummy_idx, dim); |
|
784 } |
|
785 |
|
786 ComplexNDArray |
|
787 ComplexNDArray::min (ArrayN<int>& idx_arg, int dim) const |
|
788 { |
|
789 dim_vector dv = dims (); |
|
790 dim_vector dr = dims (); |
|
791 |
|
792 if (dv.numel () == 0 || dim > dv.length () || dim < 0) |
|
793 return ComplexNDArray (); |
|
794 |
|
795 dr(dim) = 1; |
|
796 |
|
797 ComplexNDArray result (dr); |
|
798 idx_arg.resize (dr); |
|
799 |
|
800 int x_stride = 1; |
|
801 int x_len = dv(dim); |
|
802 for (int i = 0; i < dim; i++) |
|
803 x_stride *= dv(i); |
|
804 |
|
805 for (int i = 0; i < dr.numel (); i++) |
|
806 { |
|
807 int x_offset; |
|
808 if (x_stride == 1) |
|
809 x_offset = i * x_len; |
|
810 else |
|
811 { |
|
812 int x_offset2 = 0; |
|
813 x_offset = i; |
|
814 while (x_offset >= x_stride) |
|
815 { |
|
816 x_offset -= x_stride; |
|
817 x_offset2++; |
|
818 } |
|
819 x_offset += x_offset2 * x_stride * x_len; |
|
820 } |
|
821 |
|
822 int idx_j; |
|
823 |
|
824 Complex tmp_min; |
|
825 |
|
826 double abs_min = octave_NaN; |
|
827 |
|
828 for (idx_j = 0; idx_j < x_len; idx_j++) |
|
829 { |
|
830 tmp_min = elem (idx_j * x_stride + x_offset); |
|
831 |
|
832 if (! octave_is_NaN_or_NA (tmp_min)) |
|
833 { |
|
834 abs_min = ::abs(tmp_min); |
|
835 break; |
|
836 } |
|
837 } |
|
838 |
|
839 for (int j = idx_j+1; j < x_len; j++) |
|
840 { |
|
841 Complex tmp = elem (j * x_stride + x_offset); |
|
842 |
|
843 if (octave_is_NaN_or_NA (tmp)) |
|
844 continue; |
|
845 |
|
846 double abs_tmp = ::abs (tmp); |
|
847 |
|
848 if (abs_tmp < abs_min) |
|
849 { |
|
850 idx_j = j; |
|
851 tmp_min = tmp; |
|
852 abs_min = abs_tmp; |
|
853 } |
|
854 } |
|
855 |
|
856 if (octave_is_NaN_or_NA (tmp_min)) |
|
857 { |
|
858 result.elem (i) = Complex_NaN_result; |
|
859 idx_arg.elem (i) = 0; |
|
860 } |
|
861 else |
|
862 { |
|
863 result.elem (i) = tmp_min; |
|
864 idx_arg.elem (i) = idx_j; |
|
865 } |
|
866 } |
|
867 |
|
868 return result; |
|
869 } |
|
870 |
4634
|
871 NDArray |
4569
|
872 ComplexNDArray::abs (void) const |
|
873 { |
4634
|
874 NDArray retval (dims ()); |
4569
|
875 |
4634
|
876 int nel = nelem (); |
|
877 |
|
878 for (int i = 0; i < nel; i++) |
|
879 retval(i) = ::abs (elem (i)); |
4569
|
880 |
|
881 return retval; |
4514
|
882 } |
|
883 |
4765
|
884 ComplexNDArray& |
|
885 ComplexNDArray::insert (const NDArray& a, int r, int c) |
|
886 { |
|
887 dim_vector a_dv = a.dims (); |
|
888 |
|
889 int n = a_dv.length (); |
|
890 |
|
891 if (n == dimensions.length ()) |
|
892 { |
|
893 Array<int> a_ra_idx (a_dv.length (), 0); |
|
894 |
|
895 a_ra_idx.elem (0) = r; |
|
896 a_ra_idx.elem (1) = c; |
|
897 |
|
898 for (int i = 0; i < n; i++) |
|
899 { |
|
900 if (a_ra_idx (i) < 0 || (a_ra_idx (i) + a_dv (i)) > dimensions (i)) |
|
901 { |
|
902 (*current_liboctave_error_handler) |
|
903 ("Array<T>::insert: range error for insert"); |
|
904 return *this; |
|
905 } |
|
906 } |
|
907 |
|
908 a_ra_idx.elem (0) = 0; |
|
909 a_ra_idx.elem (1) = 0; |
|
910 |
|
911 int n_elt = a.numel (); |
|
912 |
|
913 // IS make_unique () NECCESSARY HERE?? |
|
914 |
|
915 for (int i = 0; i < n_elt; i++) |
|
916 { |
|
917 Array<int> ra_idx = a_ra_idx; |
|
918 |
|
919 ra_idx.elem (0) = a_ra_idx (0) + r; |
|
920 ra_idx.elem (1) = a_ra_idx (1) + c; |
|
921 |
|
922 elem (ra_idx) = a.elem (a_ra_idx); |
|
923 |
|
924 increment_index (a_ra_idx, a_dv); |
|
925 } |
|
926 } |
|
927 else |
|
928 (*current_liboctave_error_handler) |
|
929 ("Array<T>::insert: invalid indexing operation"); |
|
930 |
|
931 return *this; |
|
932 } |
|
933 |
|
934 ComplexNDArray& |
|
935 ComplexNDArray::insert (const ComplexNDArray& a, int r, int c) |
|
936 { |
|
937 Array<Complex>::insert (a, r, c); |
|
938 return *this; |
|
939 } |
|
940 |
4915
|
941 ComplexNDArray& |
|
942 ComplexNDArray::insert (const ComplexNDArray& a, const Array<int>& ra_idx) |
|
943 { |
|
944 Array<Complex>::insert (a, ra_idx); |
|
945 return *this; |
|
946 } |
|
947 |
4514
|
948 ComplexMatrix |
|
949 ComplexNDArray::matrix_value (void) const |
|
950 { |
|
951 ComplexMatrix retval; |
|
952 |
|
953 int nd = ndims (); |
|
954 |
|
955 switch (nd) |
|
956 { |
|
957 case 1: |
|
958 retval = ComplexMatrix (Array2<Complex> (*this, dimensions(0), 1)); |
|
959 break; |
|
960 |
|
961 case 2: |
|
962 retval = ComplexMatrix (Array2<Complex> (*this, dimensions(0), |
|
963 dimensions(1))); |
|
964 break; |
|
965 |
|
966 default: |
|
967 (*current_liboctave_error_handler) |
4770
|
968 ("invalid conversion of ComplexNDArray to ComplexMatrix"); |
4514
|
969 break; |
|
970 } |
|
971 |
|
972 return retval; |
|
973 } |
|
974 |
4532
|
975 void |
|
976 ComplexNDArray::increment_index (Array<int>& ra_idx, |
|
977 const dim_vector& dimensions, |
|
978 int start_dimension) |
|
979 { |
|
980 ::increment_index (ra_idx, dimensions, start_dimension); |
|
981 } |
|
982 |
4556
|
983 int |
|
984 ComplexNDArray::compute_index (Array<int>& ra_idx, |
|
985 const dim_vector& dimensions) |
|
986 { |
|
987 return ::compute_index (ra_idx, dimensions); |
|
988 } |
|
989 |
4687
|
990 |
|
991 // This contains no information on the array structure !!! |
|
992 std::ostream& |
|
993 operator << (std::ostream& os, const ComplexNDArray& a) |
|
994 { |
|
995 int nel = a.nelem (); |
|
996 |
|
997 for (int i = 0; i < nel; i++) |
|
998 { |
|
999 os << " "; |
|
1000 octave_write_complex (os, a.elem (i)); |
|
1001 os << "\n"; |
|
1002 } |
|
1003 return os; |
|
1004 } |
|
1005 |
|
1006 std::istream& |
|
1007 operator >> (std::istream& is, ComplexNDArray& a) |
|
1008 { |
|
1009 int nel = a.nelem (); |
|
1010 |
|
1011 if (nel < 1 ) |
|
1012 is.clear (std::ios::badbit); |
|
1013 else |
|
1014 { |
|
1015 Complex tmp; |
|
1016 for (int i = 0; i < nel; i++) |
|
1017 { |
|
1018 tmp = octave_read_complex (is); |
|
1019 if (is) |
|
1020 a.elem (i) = tmp; |
|
1021 else |
|
1022 goto done; |
|
1023 } |
|
1024 } |
|
1025 |
|
1026 done: |
|
1027 |
|
1028 return is; |
|
1029 } |
|
1030 |
4844
|
1031 // XXX FIXME XXX -- it would be nice to share code among the min/max |
|
1032 // functions below. |
|
1033 |
|
1034 #define EMPTY_RETURN_CHECK(T) \ |
|
1035 if (nel == 0) \ |
|
1036 return T (dv); |
|
1037 |
|
1038 ComplexNDArray |
|
1039 min (const Complex& c, const ComplexNDArray& m) |
|
1040 { |
|
1041 dim_vector dv = m.dims (); |
|
1042 int nel = dv.numel (); |
|
1043 |
|
1044 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1045 |
|
1046 ComplexNDArray result (dv); |
|
1047 |
|
1048 for (int i = 0; i < nel; i++) |
|
1049 { |
|
1050 OCTAVE_QUIT; |
|
1051 result (i) = xmin (c, m (i)); |
|
1052 } |
|
1053 |
|
1054 return result; |
|
1055 } |
|
1056 |
|
1057 ComplexNDArray |
|
1058 min (const ComplexNDArray& m, const Complex& c) |
|
1059 { |
|
1060 dim_vector dv = m.dims (); |
|
1061 int nel = dv.numel (); |
|
1062 |
|
1063 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1064 |
|
1065 ComplexNDArray result (dv); |
|
1066 |
|
1067 for (int i = 0; i < nel; i++) |
|
1068 { |
|
1069 OCTAVE_QUIT; |
|
1070 result (i) = xmin (c, m (i)); |
|
1071 } |
|
1072 |
|
1073 return result; |
|
1074 } |
|
1075 |
|
1076 ComplexNDArray |
|
1077 min (const ComplexNDArray& a, const ComplexNDArray& b) |
|
1078 { |
|
1079 dim_vector dv = a.dims (); |
|
1080 int nel = dv.numel (); |
|
1081 |
|
1082 if (dv != b.dims ()) |
|
1083 { |
|
1084 (*current_liboctave_error_handler) |
|
1085 ("two-arg min expecting args of same size"); |
|
1086 return ComplexNDArray (); |
|
1087 } |
|
1088 |
|
1089 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1090 |
|
1091 ComplexNDArray result (dv); |
|
1092 |
|
1093 for (int i = 0; i < nel; i++) |
|
1094 { |
|
1095 OCTAVE_QUIT; |
|
1096 result (i) = xmin (a (i), b (i)); |
|
1097 } |
|
1098 |
|
1099 return result; |
|
1100 } |
|
1101 |
|
1102 ComplexNDArray |
|
1103 max (const Complex& c, const ComplexNDArray& m) |
|
1104 { |
|
1105 dim_vector dv = m.dims (); |
|
1106 int nel = dv.numel (); |
|
1107 |
|
1108 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1109 |
|
1110 ComplexNDArray result (dv); |
|
1111 |
|
1112 for (int i = 0; i < nel; i++) |
|
1113 { |
|
1114 OCTAVE_QUIT; |
|
1115 result (i) = xmax (c, m (i)); |
|
1116 } |
|
1117 |
|
1118 return result; |
|
1119 } |
|
1120 |
|
1121 ComplexNDArray |
|
1122 max (const ComplexNDArray& m, const Complex& c) |
|
1123 { |
|
1124 dim_vector dv = m.dims (); |
|
1125 int nel = dv.numel (); |
|
1126 |
|
1127 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1128 |
|
1129 ComplexNDArray result (dv); |
|
1130 |
|
1131 for (int i = 0; i < nel; i++) |
|
1132 { |
|
1133 OCTAVE_QUIT; |
|
1134 result (i) = xmax (c, m (i)); |
|
1135 } |
|
1136 |
|
1137 return result; |
|
1138 } |
|
1139 |
|
1140 ComplexNDArray |
|
1141 max (const ComplexNDArray& a, const ComplexNDArray& b) |
|
1142 { |
|
1143 dim_vector dv = a.dims (); |
|
1144 int nel = dv.numel (); |
|
1145 |
|
1146 if (dv != b.dims ()) |
|
1147 { |
|
1148 (*current_liboctave_error_handler) |
|
1149 ("two-arg max expecting args of same size"); |
|
1150 return ComplexNDArray (); |
|
1151 } |
|
1152 |
|
1153 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1154 |
|
1155 ComplexNDArray result (dv); |
|
1156 |
|
1157 for (int i = 0; i < nel; i++) |
|
1158 { |
|
1159 OCTAVE_QUIT; |
|
1160 result (i) = xmax (a (i), b (i)); |
|
1161 } |
|
1162 |
|
1163 return result; |
|
1164 } |
|
1165 |
4543
|
1166 NDS_CMP_OPS(ComplexNDArray, real, Complex, real) |
|
1167 NDS_BOOL_OPS(ComplexNDArray, Complex, 0.0) |
|
1168 |
|
1169 SND_CMP_OPS(Complex, real, ComplexNDArray, real) |
|
1170 SND_BOOL_OPS(Complex, ComplexNDArray, 0.0) |
|
1171 |
|
1172 NDND_CMP_OPS(ComplexNDArray, real, ComplexNDArray, real) |
|
1173 NDND_BOOL_OPS(ComplexNDArray, ComplexNDArray, 0.0) |
|
1174 |
4514
|
1175 /* |
|
1176 ;;; Local Variables: *** |
|
1177 ;;; mode: C++ *** |
|
1178 ;;; End: *** |
|
1179 */ |