4329
|
1 SUBROUTINE ZGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK, |
|
2 $ INFO ) |
|
3 * |
|
4 * -- LAPACK routine (version 3.0) -- |
|
5 * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., |
|
6 * Courant Institute, Argonne National Lab, and Rice University |
|
7 * March 31, 1993 |
|
8 * |
|
9 * .. Scalar Arguments .. |
|
10 CHARACTER NORM |
|
11 INTEGER INFO, LDA, N |
|
12 DOUBLE PRECISION ANORM, RCOND |
|
13 * .. |
|
14 * .. Array Arguments .. |
|
15 DOUBLE PRECISION RWORK( * ) |
|
16 COMPLEX*16 A( LDA, * ), WORK( * ) |
|
17 * .. |
|
18 * |
|
19 * Purpose |
|
20 * ======= |
|
21 * |
|
22 * ZGECON estimates the reciprocal of the condition number of a general |
|
23 * complex matrix A, in either the 1-norm or the infinity-norm, using |
|
24 * the LU factorization computed by ZGETRF. |
|
25 * |
|
26 * An estimate is obtained for norm(inv(A)), and the reciprocal of the |
|
27 * condition number is computed as |
|
28 * RCOND = 1 / ( norm(A) * norm(inv(A)) ). |
|
29 * |
|
30 * Arguments |
|
31 * ========= |
|
32 * |
|
33 * NORM (input) CHARACTER*1 |
|
34 * Specifies whether the 1-norm condition number or the |
|
35 * infinity-norm condition number is required: |
|
36 * = '1' or 'O': 1-norm; |
|
37 * = 'I': Infinity-norm. |
|
38 * |
|
39 * N (input) INTEGER |
|
40 * The order of the matrix A. N >= 0. |
|
41 * |
|
42 * A (input) COMPLEX*16 array, dimension (LDA,N) |
|
43 * The factors L and U from the factorization A = P*L*U |
|
44 * as computed by ZGETRF. |
|
45 * |
|
46 * LDA (input) INTEGER |
|
47 * The leading dimension of the array A. LDA >= max(1,N). |
|
48 * |
|
49 * ANORM (input) DOUBLE PRECISION |
|
50 * If NORM = '1' or 'O', the 1-norm of the original matrix A. |
|
51 * If NORM = 'I', the infinity-norm of the original matrix A. |
|
52 * |
|
53 * RCOND (output) DOUBLE PRECISION |
|
54 * The reciprocal of the condition number of the matrix A, |
|
55 * computed as RCOND = 1/(norm(A) * norm(inv(A))). |
|
56 * |
|
57 * WORK (workspace) COMPLEX*16 array, dimension (2*N) |
|
58 * |
|
59 * RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) |
|
60 * |
|
61 * INFO (output) INTEGER |
|
62 * = 0: successful exit |
|
63 * < 0: if INFO = -i, the i-th argument had an illegal value |
|
64 * |
|
65 * ===================================================================== |
|
66 * |
|
67 * .. Parameters .. |
|
68 DOUBLE PRECISION ONE, ZERO |
|
69 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
|
70 * .. |
|
71 * .. Local Scalars .. |
|
72 LOGICAL ONENRM |
|
73 CHARACTER NORMIN |
|
74 INTEGER IX, KASE, KASE1 |
|
75 DOUBLE PRECISION AINVNM, SCALE, SL, SMLNUM, SU |
|
76 COMPLEX*16 ZDUM |
|
77 * .. |
|
78 * .. External Functions .. |
|
79 LOGICAL LSAME |
|
80 INTEGER IZAMAX |
|
81 DOUBLE PRECISION DLAMCH |
|
82 EXTERNAL LSAME, IZAMAX, DLAMCH |
|
83 * .. |
|
84 * .. External Subroutines .. |
|
85 EXTERNAL XERBLA, ZDRSCL, ZLACON, ZLATRS |
|
86 * .. |
|
87 * .. Intrinsic Functions .. |
|
88 INTRINSIC ABS, DBLE, DIMAG, MAX |
|
89 * .. |
|
90 * .. Statement Functions .. |
|
91 DOUBLE PRECISION CABS1 |
|
92 * .. |
|
93 * .. Statement Function definitions .. |
|
94 CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) |
|
95 * .. |
|
96 * .. Executable Statements .. |
|
97 * |
|
98 * Test the input parameters. |
|
99 * |
|
100 INFO = 0 |
|
101 ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' ) |
|
102 IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN |
|
103 INFO = -1 |
|
104 ELSE IF( N.LT.0 ) THEN |
|
105 INFO = -2 |
|
106 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN |
|
107 INFO = -4 |
|
108 ELSE IF( ANORM.LT.ZERO ) THEN |
|
109 INFO = -5 |
|
110 END IF |
|
111 IF( INFO.NE.0 ) THEN |
|
112 CALL XERBLA( 'ZGECON', -INFO ) |
|
113 RETURN |
|
114 END IF |
|
115 * |
|
116 * Quick return if possible |
|
117 * |
|
118 RCOND = ZERO |
|
119 IF( N.EQ.0 ) THEN |
|
120 RCOND = ONE |
|
121 RETURN |
|
122 ELSE IF( ANORM.EQ.ZERO ) THEN |
|
123 RETURN |
|
124 END IF |
|
125 * |
|
126 SMLNUM = DLAMCH( 'Safe minimum' ) |
|
127 * |
|
128 * Estimate the norm of inv(A). |
|
129 * |
|
130 AINVNM = ZERO |
|
131 NORMIN = 'N' |
|
132 IF( ONENRM ) THEN |
|
133 KASE1 = 1 |
|
134 ELSE |
|
135 KASE1 = 2 |
|
136 END IF |
|
137 KASE = 0 |
|
138 10 CONTINUE |
|
139 CALL ZLACON( N, WORK( N+1 ), WORK, AINVNM, KASE ) |
|
140 IF( KASE.NE.0 ) THEN |
|
141 IF( KASE.EQ.KASE1 ) THEN |
|
142 * |
|
143 * Multiply by inv(L). |
|
144 * |
|
145 CALL ZLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A, |
|
146 $ LDA, WORK, SL, RWORK, INFO ) |
|
147 * |
|
148 * Multiply by inv(U). |
|
149 * |
|
150 CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N, |
|
151 $ A, LDA, WORK, SU, RWORK( N+1 ), INFO ) |
|
152 ELSE |
|
153 * |
|
154 * Multiply by inv(U'). |
|
155 * |
|
156 CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit', |
|
157 $ NORMIN, N, A, LDA, WORK, SU, RWORK( N+1 ), |
|
158 $ INFO ) |
|
159 * |
|
160 * Multiply by inv(L'). |
|
161 * |
|
162 CALL ZLATRS( 'Lower', 'Conjugate transpose', 'Unit', NORMIN, |
|
163 $ N, A, LDA, WORK, SL, RWORK, INFO ) |
|
164 END IF |
|
165 * |
|
166 * Divide X by 1/(SL*SU) if doing so will not cause overflow. |
|
167 * |
|
168 SCALE = SL*SU |
|
169 NORMIN = 'Y' |
|
170 IF( SCALE.NE.ONE ) THEN |
|
171 IX = IZAMAX( N, WORK, 1 ) |
|
172 IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO ) |
|
173 $ GO TO 20 |
|
174 CALL ZDRSCL( N, SCALE, WORK, 1 ) |
|
175 END IF |
|
176 GO TO 10 |
|
177 END IF |
|
178 * |
|
179 * Compute the estimate of the reciprocal condition number. |
|
180 * |
|
181 IF( AINVNM.NE.ZERO ) |
|
182 $ RCOND = ( ONE / AINVNM ) / ANORM |
|
183 * |
|
184 20 CONTINUE |
|
185 RETURN |
|
186 * |
|
187 * End of ZGECON |
|
188 * |
|
189 END |