1993
|
1 // Template array classes |
237
|
2 /* |
|
3 |
2847
|
4 Copyright (C) 1996, 1997 John W. Eaton |
237
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
1315
|
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
237
|
21 |
|
22 */ |
|
23 |
4192
|
24 #if defined (__GNUG__) && defined (USE_PRAGMA_INTERFACE_IMPLEMENTATION) |
1296
|
25 #pragma implementation |
|
26 #endif |
|
27 |
237
|
28 #ifdef HAVE_CONFIG_H |
1192
|
29 #include <config.h> |
237
|
30 #endif |
|
31 |
1367
|
32 #include <cassert> |
4518
|
33 #include <climits> |
449
|
34 |
3503
|
35 #include <iostream> |
1560
|
36 |
237
|
37 #include "Array.h" |
4517
|
38 #include "Array-flags.h" |
|
39 #include "Range.h" |
1560
|
40 #include "idx-vector.h" |
|
41 #include "lo-error.h" |
|
42 |
1360
|
43 // One dimensional array class. Handles the reference counting for |
|
44 // all the derived classes. |
237
|
45 |
|
46 template <class T> |
1619
|
47 Array<T>::~Array (void) |
|
48 { |
|
49 if (--rep->count <= 0) |
|
50 delete rep; |
|
51 |
|
52 delete [] idx; |
4513
|
53 } |
|
54 |
4532
|
55 template <class T> |
|
56 Array<T> |
|
57 Array<T>::squeeze (void) const |
|
58 { |
|
59 Array<T> retval = *this; |
|
60 |
|
61 bool dims_changed = false; |
|
62 |
|
63 dim_vector new_dimensions = dimensions; |
|
64 |
|
65 int k = 0; |
|
66 |
|
67 for (int i = 0; i < ndims (); i++) |
|
68 { |
|
69 if (dimensions(i) == 1) |
|
70 dims_changed = true; |
|
71 else |
|
72 new_dimensions(k++) = dimensions(i); |
|
73 } |
|
74 |
|
75 if (dims_changed) |
|
76 { |
|
77 if (k == 0) |
|
78 new_dimensions = dim_vector (1); |
|
79 else |
|
80 new_dimensions.resize (k); |
|
81 |
|
82 Array<T> retval = *this; |
|
83 |
|
84 retval.make_unique (); |
|
85 |
|
86 retval.dimensions = new_dimensions; |
|
87 } |
|
88 |
|
89 return retval; |
|
90 } |
|
91 |
4513
|
92 // A guess (should be quite conservative). |
|
93 #define MALLOC_OVERHEAD 1024 |
|
94 |
|
95 template <class T> |
|
96 int |
|
97 Array<T>::get_size (int r, int c) |
|
98 { |
|
99 // XXX KLUGE XXX |
|
100 |
|
101 // If an allocation of an array with r * c elements of type T |
|
102 // would cause an overflow in the allocator when computing the |
|
103 // size of the allocation, then return a value which, although |
|
104 // not equivalent to the actual request, should be too large for |
|
105 // most current hardware, but not so large to cause the |
|
106 // allocator to barf on computing retval * sizeof (T). |
|
107 |
|
108 static int nl; |
|
109 static double dl |
|
110 = frexp (static_cast<double> |
|
111 (INT_MAX - MALLOC_OVERHEAD) / sizeof (T), &nl); |
|
112 |
|
113 // This value should be an integer. If we return this value and |
|
114 // things work the way we expect, we should be paying a visit to |
|
115 // new_handler in no time flat. |
|
116 static int max_items = static_cast<int> (ldexp (dl, nl)); |
|
117 |
|
118 int nr, nc; |
|
119 double dr = frexp (static_cast<double> (r), &nr); |
|
120 double dc = frexp (static_cast<double> (c), &nc); |
|
121 |
|
122 int nt = nr + nc; |
|
123 double dt = dr * dc; |
|
124 |
4532
|
125 if (dt < 0.5) |
4513
|
126 { |
|
127 nt--; |
|
128 dt *= 2; |
|
129 } |
|
130 |
|
131 return (nt < nl || (nt == nl && dt < dl)) ? r * c : max_items; |
237
|
132 } |
|
133 |
|
134 template <class T> |
4513
|
135 int |
|
136 Array<T>::get_size (int r, int c, int p) |
237
|
137 { |
4513
|
138 // XXX KLUGE XXX |
|
139 |
|
140 // If an allocation of an array with r * c * p elements of type T |
|
141 // would cause an overflow in the allocator when computing the |
|
142 // size of the allocation, then return a value which, although |
|
143 // not equivalent to the actual request, should be too large for |
|
144 // most current hardware, but not so large to cause the |
|
145 // allocator to barf on computing retval * sizeof (T). |
|
146 |
|
147 static int nl; |
|
148 static double dl |
|
149 = frexp (static_cast<double> |
|
150 (INT_MAX - MALLOC_OVERHEAD) / sizeof (T), &nl); |
|
151 |
|
152 // This value should be an integer. If we return this value and |
|
153 // things work the way we expect, we should be paying a visit to |
|
154 // new_handler in no time flat. |
|
155 static int max_items = static_cast<int> (ldexp (dl, nl)); |
|
156 |
|
157 int nr, nc, np; |
|
158 double dr = frexp (static_cast<double> (r), &nr); |
|
159 double dc = frexp (static_cast<double> (c), &nc); |
|
160 double dp = frexp (static_cast<double> (p), &np); |
|
161 |
|
162 int nt = nr + nc + np; |
|
163 double dt = dr * dc * dp; |
|
164 |
4532
|
165 if (dt < 0.5) |
659
|
166 { |
4513
|
167 nt--; |
|
168 dt *= 2; |
237
|
169 |
4532
|
170 if (dt < 0.5) |
|
171 { |
|
172 nt--; |
|
173 dt *= 2; |
|
174 } |
659
|
175 } |
1619
|
176 |
4513
|
177 return (nt < nl || (nt == nl && dt < dl)) ? r * c * p : max_items; |
237
|
178 } |
|
179 |
|
180 template <class T> |
4513
|
181 int |
|
182 Array<T>::get_size (const dim_vector& ra_idx) |
237
|
183 { |
4513
|
184 // XXX KLUGE XXX |
|
185 |
|
186 // If an allocation of an array with r * c elements of type T |
|
187 // would cause an overflow in the allocator when computing the |
|
188 // size of the allocation, then return a value which, although |
|
189 // not equivalent to the actual request, should be too large for |
|
190 // most current hardware, but not so large to cause the |
|
191 // allocator to barf on computing retval * sizeof (T). |
|
192 |
|
193 static int nl; |
|
194 static double dl |
|
195 = frexp (static_cast<double> |
|
196 (INT_MAX - MALLOC_OVERHEAD) / sizeof (T), &nl); |
|
197 |
|
198 // This value should be an integer. If we return this value and |
|
199 // things work the way we expect, we should be paying a visit to |
|
200 // new_handler in no time flat. |
|
201 |
|
202 static int max_items = static_cast<int> (ldexp (dl, nl)); |
|
203 |
|
204 int retval = max_items; |
|
205 |
|
206 int n = ra_idx.length (); |
|
207 |
|
208 int nt = 0; |
|
209 double dt = 1; |
|
210 |
|
211 for (int i = 0; i < n; i++) |
237
|
212 { |
4513
|
213 int nra_idx; |
|
214 double dra_idx = frexp (static_cast<double> (ra_idx(i)), &nra_idx); |
|
215 |
|
216 nt += nra_idx; |
|
217 dt *= dra_idx; |
4532
|
218 |
|
219 if (dt < 0.5) |
|
220 { |
|
221 nt--; |
|
222 dt *= 2; |
|
223 } |
237
|
224 } |
|
225 |
4513
|
226 if (nt < nl || (nt == nl && dt < dl)) |
|
227 { |
|
228 retval = 1; |
|
229 |
|
230 for (int i = 0; i < n; i++) |
|
231 retval *= ra_idx(i); |
|
232 } |
|
233 |
|
234 return retval; |
237
|
235 } |
|
236 |
4513
|
237 #undef MALLOC_OVERHEAD |
|
238 |
237
|
239 template <class T> |
4513
|
240 int |
|
241 Array<T>::compute_index (const Array<int>& ra_idx) const |
237
|
242 { |
4513
|
243 int retval = -1; |
|
244 |
|
245 int n = dimensions.length (); |
|
246 |
|
247 if (n > 0 && n == ra_idx.length ()) |
237
|
248 { |
4513
|
249 retval = ra_idx(--n); |
237
|
250 |
4513
|
251 while (--n >= 0) |
|
252 { |
|
253 retval *= dimensions(n); |
|
254 retval += ra_idx(n); |
|
255 } |
|
256 } |
|
257 else |
|
258 (*current_liboctave_error_handler) |
|
259 ("Array<T>::compute_index: invalid ra_idxing operation"); |
237
|
260 |
4513
|
261 return retval; |
237
|
262 } |
|
263 |
2049
|
264 template <class T> |
|
265 T |
2109
|
266 Array<T>::range_error (const char *fcn, int n) const |
2049
|
267 { |
2109
|
268 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
2049
|
269 return T (); |
|
270 } |
|
271 |
|
272 template <class T> |
|
273 T& |
2109
|
274 Array<T>::range_error (const char *fcn, int n) |
2049
|
275 { |
2109
|
276 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
2049
|
277 static T foo; |
|
278 return foo; |
|
279 } |
|
280 |
3933
|
281 template <class T> |
4513
|
282 T |
|
283 Array<T>::range_error (const char *fcn, int i, int j) const |
|
284 { |
|
285 (*current_liboctave_error_handler) |
|
286 ("%s (%d, %d): range error", fcn, i, j); |
|
287 return T (); |
|
288 } |
|
289 |
|
290 template <class T> |
|
291 T& |
|
292 Array<T>::range_error (const char *fcn, int i, int j) |
|
293 { |
|
294 (*current_liboctave_error_handler) |
|
295 ("%s (%d, %d): range error", fcn, i, j); |
|
296 static T foo; |
|
297 return foo; |
|
298 } |
|
299 |
|
300 template <class T> |
|
301 T |
|
302 Array<T>::range_error (const char *fcn, int i, int j, int k) const |
|
303 { |
|
304 (*current_liboctave_error_handler) |
|
305 ("%s (%d, %d, %d): range error", fcn, i, j, k); |
|
306 return T (); |
|
307 } |
|
308 |
|
309 template <class T> |
|
310 T& |
|
311 Array<T>::range_error (const char *fcn, int i, int j, int k) |
|
312 { |
|
313 (*current_liboctave_error_handler) |
|
314 ("%s (%d, %d, %d): range error", fcn, i, j, k); |
|
315 static T foo; |
|
316 return foo; |
|
317 } |
|
318 |
|
319 template <class T> |
|
320 T |
|
321 Array<T>::range_error (const char *fcn, const Array<int>& ra_idx) const |
|
322 { |
|
323 // XXX FIXME XXX -- report index values too! |
|
324 |
|
325 (*current_liboctave_error_handler) ("range error in Array"); |
|
326 |
|
327 return T (); |
|
328 } |
|
329 |
|
330 template <class T> |
|
331 T& |
|
332 Array<T>::range_error (const char *fcn, const Array<int>& ra_idx) |
|
333 { |
|
334 // XXX FIXME XXX -- report index values too! |
|
335 |
|
336 (*current_liboctave_error_handler) ("range error in Array"); |
|
337 |
|
338 static T foo; |
|
339 return foo; |
|
340 } |
|
341 |
|
342 template <class T> |
|
343 void |
|
344 Array<T>::resize_no_fill (int n) |
|
345 { |
|
346 if (n < 0) |
|
347 { |
|
348 (*current_liboctave_error_handler) |
|
349 ("can't resize to negative dimension"); |
|
350 return; |
|
351 } |
|
352 |
|
353 if (n == length ()) |
|
354 return; |
|
355 |
|
356 typename Array<T>::ArrayRep *old_rep = rep; |
|
357 const T *old_data = data (); |
|
358 int old_len = length (); |
|
359 |
|
360 rep = new typename Array<T>::ArrayRep (n); |
|
361 |
|
362 dimensions = dim_vector (n); |
|
363 |
|
364 if (old_data && old_len > 0) |
|
365 { |
|
366 int min_len = old_len < n ? old_len : n; |
|
367 |
|
368 for (int i = 0; i < min_len; i++) |
|
369 xelem (i) = old_data[i]; |
|
370 } |
|
371 |
|
372 if (--old_rep->count <= 0) |
|
373 delete old_rep; |
|
374 } |
|
375 |
|
376 template <class T> |
|
377 void |
|
378 Array<T>::resize_no_fill (const dim_vector& dims) |
|
379 { |
|
380 int n = dims.length (); |
|
381 |
|
382 for (int i = 0; i < n; i++) |
|
383 { |
|
384 if (dims(i) < 0) |
|
385 { |
|
386 (*current_liboctave_error_handler) |
|
387 ("can't resize to negative dimension"); |
|
388 return; |
|
389 } |
|
390 } |
|
391 |
|
392 bool no_change = true; |
|
393 |
|
394 for (int i = 0; i < n; i++) |
|
395 { |
|
396 if (dims(i) != dimensions(i)) |
|
397 { |
|
398 no_change = false; |
|
399 break; |
|
400 } |
|
401 } |
|
402 |
|
403 if (no_change) |
|
404 return; |
|
405 |
|
406 int old_len = length (); |
|
407 |
|
408 typename Array<T>::ArrayRep *old_rep = rep; |
|
409 const T *old_data = data (); |
|
410 |
|
411 rep = new typename Array<T>::ArrayRep (get_size (dims)); |
|
412 |
|
413 dim_vector old_dimensions = dimensions; |
|
414 |
|
415 dimensions = dims; |
|
416 |
|
417 Array<int> ra_idx (dimensions.length (), 0); |
|
418 |
|
419 for (int i = 0; i < old_len; i++) |
|
420 { |
|
421 if (index_in_bounds (ra_idx, dimensions)) |
|
422 xelem (ra_idx) = old_data[i]; |
|
423 |
|
424 increment_index (ra_idx, dimensions); |
|
425 } |
|
426 |
|
427 if (--old_rep->count <= 0) |
|
428 delete old_rep; |
|
429 } |
|
430 |
|
431 template <class T> |
|
432 void |
|
433 Array<T>::resize_no_fill (int r, int c) |
|
434 { |
|
435 if (r < 0 || c < 0) |
|
436 { |
|
437 (*current_liboctave_error_handler) |
|
438 ("can't resize to negative dimension"); |
|
439 return; |
|
440 } |
|
441 |
|
442 if (r == dim1 () && c == dim2 ()) |
|
443 return; |
|
444 |
|
445 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; |
|
446 const T *old_data = data (); |
|
447 |
|
448 int old_d1 = dim1 (); |
|
449 int old_d2 = dim2 (); |
|
450 int old_len = length (); |
|
451 |
|
452 rep = new typename Array<T>::ArrayRep (get_size (r, c)); |
|
453 |
|
454 dimensions = dim_vector (r, c); |
|
455 |
|
456 if (old_data && old_len > 0) |
|
457 { |
|
458 int min_r = old_d1 < r ? old_d1 : r; |
|
459 int min_c = old_d2 < c ? old_d2 : c; |
|
460 |
|
461 for (int j = 0; j < min_c; j++) |
|
462 for (int i = 0; i < min_r; i++) |
|
463 xelem (i, j) = old_data[old_d1*j+i]; |
|
464 } |
|
465 |
|
466 if (--old_rep->count <= 0) |
|
467 delete old_rep; |
|
468 } |
|
469 |
|
470 template <class T> |
|
471 void |
|
472 Array<T>::resize_no_fill (int r, int c, int p) |
|
473 { |
|
474 if (r < 0 || c < 0 || p < 0) |
|
475 { |
|
476 (*current_liboctave_error_handler) |
|
477 ("can't resize to negative dimension"); |
|
478 return; |
|
479 } |
|
480 |
|
481 if (r == dim1 () && c == dim2 () && p == dim3 ()) |
|
482 return; |
|
483 |
|
484 typename Array<T>::ArrayRep *old_rep = rep; |
|
485 const T *old_data = data (); |
|
486 |
|
487 int old_d1 = dim1 (); |
|
488 int old_d2 = dim2 (); |
|
489 int old_d3 = dim3 (); |
|
490 int old_len = length (); |
|
491 |
|
492 int ts = get_size (get_size (r, c), p); |
|
493 |
|
494 rep = new typename Array<T>::ArrayRep (ts); |
|
495 |
|
496 dimensions = dim_vector (r, c, p); |
|
497 |
|
498 if (old_data && old_len > 0) |
|
499 { |
|
500 int min_r = old_d1 < r ? old_d1 : r; |
|
501 int min_c = old_d2 < c ? old_d2 : c; |
|
502 int min_p = old_d3 < p ? old_d3 : p; |
|
503 |
|
504 for (int k = 0; k < min_p; k++) |
|
505 for (int j = 0; j < min_c; j++) |
|
506 for (int i = 0; i < min_r; i++) |
|
507 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; |
|
508 } |
|
509 |
|
510 if (--old_rep->count <= 0) |
|
511 delete old_rep; |
|
512 } |
|
513 |
|
514 template <class T> |
|
515 void |
|
516 Array<T>::resize_and_fill (int n, const T& val) |
|
517 { |
|
518 if (n < 0) |
|
519 { |
|
520 (*current_liboctave_error_handler) |
|
521 ("can't resize to negative dimension"); |
|
522 return; |
|
523 } |
|
524 |
|
525 if (n == length ()) |
|
526 return; |
|
527 |
|
528 typename Array<T>::ArrayRep *old_rep = rep; |
|
529 const T *old_data = data (); |
|
530 int old_len = length (); |
|
531 |
|
532 rep = new typename Array<T>::ArrayRep (n); |
|
533 |
|
534 dimensions = dim_vector (n); |
|
535 |
|
536 int min_len = old_len < n ? old_len : n; |
|
537 |
|
538 if (old_data && old_len > 0) |
|
539 { |
|
540 for (int i = 0; i < min_len; i++) |
|
541 xelem (i) = old_data[i]; |
|
542 } |
|
543 |
|
544 for (int i = old_len; i < n; i++) |
|
545 xelem (i) = val; |
|
546 |
|
547 if (--old_rep->count <= 0) |
|
548 delete old_rep; |
|
549 } |
|
550 |
|
551 template <class T> |
|
552 void |
|
553 Array<T>::resize_and_fill (int r, int c, const T& val) |
|
554 { |
|
555 if (r < 0 || c < 0) |
|
556 { |
|
557 (*current_liboctave_error_handler) |
|
558 ("can't resize to negative dimension"); |
|
559 return; |
|
560 } |
|
561 |
|
562 if (r == dim1 () && c == dim2 ()) |
|
563 return; |
|
564 |
|
565 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; |
|
566 const T *old_data = data (); |
|
567 |
|
568 int old_d1 = dim1 (); |
|
569 int old_d2 = dim2 (); |
|
570 int old_len = length (); |
|
571 |
|
572 rep = new typename Array<T>::ArrayRep (get_size (r, c)); |
|
573 |
|
574 dimensions = dim_vector (r, c); |
|
575 |
|
576 int min_r = old_d1 < r ? old_d1 : r; |
|
577 int min_c = old_d2 < c ? old_d2 : c; |
|
578 |
|
579 if (old_data && old_len > 0) |
|
580 { |
|
581 for (int j = 0; j < min_c; j++) |
|
582 for (int i = 0; i < min_r; i++) |
|
583 xelem (i, j) = old_data[old_d1*j+i]; |
|
584 } |
|
585 |
|
586 for (int j = 0; j < min_c; j++) |
|
587 for (int i = min_r; i < r; i++) |
|
588 xelem (i, j) = val; |
|
589 |
|
590 for (int j = min_c; j < c; j++) |
|
591 for (int i = 0; i < r; i++) |
|
592 xelem (i, j) = val; |
|
593 |
|
594 if (--old_rep->count <= 0) |
|
595 delete old_rep; |
|
596 } |
|
597 |
|
598 template <class T> |
|
599 void |
|
600 Array<T>::resize_and_fill (int r, int c, int p, const T& val) |
|
601 { |
|
602 if (r < 0 || c < 0 || p < 0) |
|
603 { |
|
604 (*current_liboctave_error_handler) |
|
605 ("can't resize to negative dimension"); |
|
606 return; |
|
607 } |
|
608 |
|
609 if (r == dim1 () && c == dim2 () && p == dim3 ()) |
|
610 return; |
|
611 |
|
612 typename Array<T>::ArrayRep *old_rep = rep; |
|
613 const T *old_data = data (); |
|
614 |
|
615 int old_d1 = dim1 (); |
|
616 int old_d2 = dim2 (); |
|
617 int old_d3 = dim3 (); |
|
618 |
|
619 int old_len = length (); |
|
620 |
|
621 int ts = get_size (get_size (r, c), p); |
|
622 |
|
623 rep = new typename Array<T>::ArrayRep (ts); |
|
624 |
|
625 dimensions = dim_vector (r, c, p); |
|
626 |
|
627 int min_r = old_d1 < r ? old_d1 : r; |
|
628 int min_c = old_d2 < c ? old_d2 : c; |
|
629 int min_p = old_d3 < p ? old_d3 : p; |
|
630 |
|
631 if (old_data && old_len > 0) |
|
632 for (int k = 0; k < min_p; k++) |
|
633 for (int j = 0; j < min_c; j++) |
|
634 for (int i = 0; i < min_r; i++) |
|
635 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; |
|
636 |
|
637 // XXX FIXME XXX -- if the copy constructor is expensive, this may |
|
638 // win. Otherwise, it may make more sense to just copy the value |
|
639 // everywhere when making the new ArrayRep. |
|
640 |
|
641 for (int k = 0; k < min_p; k++) |
|
642 for (int j = min_c; j < c; j++) |
|
643 for (int i = 0; i < min_r; i++) |
|
644 xelem (i, j, k) = val; |
|
645 |
|
646 for (int k = 0; k < min_p; k++) |
|
647 for (int j = 0; j < c; j++) |
|
648 for (int i = min_r; i < r; i++) |
|
649 xelem (i, j, k) = val; |
|
650 |
|
651 for (int k = min_p; k < p; k++) |
|
652 for (int j = 0; j < c; j++) |
|
653 for (int i = 0; i < r; i++) |
|
654 xelem (i, j, k) = val; |
|
655 |
|
656 if (--old_rep->count <= 0) |
|
657 delete old_rep; |
|
658 } |
|
659 |
|
660 template <class T> |
|
661 void |
|
662 Array<T>::resize_and_fill (const dim_vector& dims, const T& val) |
|
663 { |
|
664 int n = dims.length (); |
|
665 |
|
666 for (int i = 0; i < n; i++) |
|
667 { |
|
668 if (dims(i) < 0) |
|
669 { |
|
670 (*current_liboctave_error_handler) |
|
671 ("can't resize to negative dimension"); |
|
672 return; |
|
673 } |
|
674 } |
|
675 |
|
676 bool no_change = true; |
|
677 |
|
678 for (int i = 0; i < n; i++) |
|
679 { |
|
680 if (dims(i) != dimensions(i)) |
|
681 { |
|
682 no_change = false; |
|
683 break; |
|
684 } |
|
685 } |
|
686 |
|
687 if (no_change) |
|
688 return; |
|
689 |
|
690 typename Array<T>::ArrayRep *old_rep = rep; |
|
691 const T *old_data = data (); |
|
692 |
|
693 int old_len = length (); |
|
694 |
|
695 int len = get_size (dims); |
|
696 |
|
697 rep = new typename Array<T>::ArrayRep (len); |
|
698 |
|
699 dim_vector old_dimensions = dimensions; |
|
700 |
|
701 dimensions = dims; |
|
702 |
|
703 Array<int> ra_idx (dimensions.length (), 0); |
|
704 |
|
705 // XXX FIXME XXX -- it is much simpler to fill the whole array |
|
706 // first, but probably slower for large arrays, or if the assignment |
|
707 // operator for the type T is expensive. OTOH, the logic for |
|
708 // deciding whether an element needs the copied value or the filled |
|
709 // value might be more expensive. |
|
710 |
|
711 for (int i = 0; i < len; i++) |
|
712 rep->elem (i) = val; |
|
713 |
|
714 for (int i = 0; i < old_len; i++) |
|
715 { |
|
716 if (index_in_bounds (ra_idx, dimensions)) |
|
717 xelem (ra_idx) = old_data[i]; |
|
718 |
|
719 increment_index (ra_idx, dimensions); |
|
720 } |
|
721 |
|
722 if (--old_rep->count <= 0) |
|
723 delete old_rep; |
|
724 } |
|
725 |
|
726 template <class T> |
|
727 Array<T>& |
|
728 Array<T>::insert (const Array<T>& a, int r, int c) |
|
729 { |
|
730 int a_rows = a.rows (); |
|
731 int a_cols = a.cols (); |
|
732 |
|
733 if (r < 0 || r + a_rows > rows () || c < 0 || c + a_cols > cols ()) |
|
734 { |
|
735 (*current_liboctave_error_handler) ("range error for insert"); |
|
736 return *this; |
|
737 } |
|
738 |
|
739 for (int j = 0; j < a_cols; j++) |
|
740 for (int i = 0; i < a_rows; i++) |
|
741 elem (r+i, c+j) = a.elem (i, j); |
|
742 |
|
743 return *this; |
|
744 } |
|
745 |
|
746 template <class T> |
|
747 Array<T>& |
|
748 Array<T>::insert (const Array<T>& a, const Array<int>& ra_idx) |
|
749 { |
|
750 int n = ra_idx.length (); |
|
751 |
|
752 if (n == dimensions.length ()) |
|
753 { |
|
754 dim_vector a_dims = a.dims (); |
|
755 |
|
756 for (int i = 0; i < n; i++) |
|
757 { |
|
758 if (ra_idx(i) < 0 || ra_idx(i) + a_dims(i) > dimensions(i)) |
|
759 { |
|
760 (*current_liboctave_error_handler) |
|
761 ("Array<T>::insert: range error for insert"); |
|
762 return *this; |
|
763 } |
|
764 } |
|
765 |
|
766 #if 0 |
|
767 // XXX FIXME XXX -- need to copy elements |
|
768 |
|
769 for (int j = 0; j < a_cols; j++) |
|
770 for (int i = 0; i < a_rows; i++) |
|
771 elem (r+i, c+j) = a.elem (i, j); |
|
772 #endif |
|
773 |
|
774 } |
|
775 else |
|
776 (*current_liboctave_error_handler) |
|
777 ("Array<T>::insert: invalid indexing operation"); |
|
778 |
|
779 return *this; |
|
780 } |
|
781 |
|
782 template <class T> |
|
783 Array<T> |
|
784 Array<T>::transpose (void) const |
|
785 { |
|
786 int nr = dim1 (); |
|
787 int nc = dim2 (); |
|
788 |
|
789 if (nr > 1 && nc > 1) |
|
790 { |
|
791 Array<T> result (dim_vector (nc, nr)); |
|
792 |
|
793 for (int j = 0; j < nc; j++) |
|
794 for (int i = 0; i < nr; i++) |
|
795 result.xelem (j, i) = xelem (i, j); |
|
796 |
|
797 return result; |
|
798 } |
|
799 else |
|
800 { |
|
801 // Fast transpose for vectors and empty matrices |
|
802 return Array<T> (*this, dim_vector (nc, nr)); |
|
803 } |
|
804 } |
|
805 |
|
806 template <class T> |
|
807 T * |
|
808 Array<T>::fortran_vec (void) |
|
809 { |
|
810 if (rep->count > 1) |
|
811 { |
|
812 --rep->count; |
|
813 rep = new typename Array<T>::ArrayRep (*rep); |
|
814 } |
|
815 return rep->data; |
|
816 } |
|
817 |
|
818 template <class T> |
3933
|
819 void |
4517
|
820 Array<T>::maybe_delete_dims (void) |
|
821 { |
|
822 int ndims = dimensions.length (); |
|
823 |
|
824 dim_vector new_dims (1, 1); |
|
825 |
|
826 bool delete_dims = true; |
|
827 |
|
828 for (int i = ndims - 1; i >= 0; i--) |
|
829 { |
|
830 if (delete_dims) |
|
831 { |
|
832 if (dimensions(i) != 1) |
|
833 { |
|
834 delete_dims = false; |
|
835 |
|
836 new_dims = dim_vector (i + 1, dimensions(i)); |
|
837 } |
|
838 } |
|
839 else |
|
840 new_dims(i) = dimensions(i); |
|
841 } |
4530
|
842 |
4517
|
843 if (ndims != new_dims.length ()) |
|
844 dimensions = new_dims; |
|
845 } |
|
846 |
|
847 template <class T> |
|
848 void |
|
849 Array<T>::clear_index (void) |
|
850 { |
|
851 delete [] idx; |
|
852 idx = 0; |
|
853 idx_count = 0; |
|
854 } |
|
855 |
|
856 template <class T> |
|
857 void |
|
858 Array<T>::set_index (const idx_vector& idx_arg) |
|
859 { |
|
860 int nd = ndims (); |
|
861 |
|
862 if (! idx && nd > 0) |
|
863 idx = new idx_vector [nd]; |
|
864 |
|
865 if (idx_count < nd) |
|
866 { |
|
867 idx[idx_count++] = idx_arg; |
|
868 } |
|
869 else |
|
870 { |
|
871 idx_vector *new_idx = new idx_vector [idx_count+1]; |
|
872 |
|
873 for (int i = 0; i < idx_count; i++) |
|
874 new_idx[i] = idx[i]; |
|
875 |
|
876 new_idx[idx_count++] = idx_arg; |
|
877 |
|
878 delete [] idx; |
|
879 |
|
880 idx = new_idx; |
|
881 } |
|
882 } |
|
883 |
|
884 template <class T> |
|
885 void |
|
886 Array<T>::maybe_delete_elements (idx_vector& idx_arg) |
|
887 { |
|
888 switch (ndims ()) |
|
889 { |
|
890 case 1: |
|
891 maybe_delete_elements_1 (idx_arg); |
|
892 break; |
|
893 |
|
894 case 2: |
|
895 maybe_delete_elements_2 (idx_arg); |
|
896 break; |
|
897 |
|
898 default: |
|
899 (*current_liboctave_error_handler) |
|
900 ("Array<T>::maybe_delete_elements: invalid operation"); |
|
901 break; |
|
902 } |
|
903 } |
|
904 |
|
905 template <class T> |
|
906 void |
|
907 Array<T>::maybe_delete_elements_1 (idx_vector& idx_arg) |
|
908 { |
|
909 int len = length (); |
|
910 |
|
911 if (len == 0) |
|
912 return; |
|
913 |
|
914 if (idx_arg.is_colon_equiv (len, 1)) |
|
915 resize_no_fill (0); |
|
916 else |
|
917 { |
|
918 int num_to_delete = idx_arg.length (len); |
|
919 |
|
920 if (num_to_delete != 0) |
|
921 { |
|
922 int new_len = len; |
|
923 |
|
924 int iidx = 0; |
|
925 |
|
926 for (int i = 0; i < len; i++) |
|
927 if (i == idx_arg.elem (iidx)) |
|
928 { |
|
929 iidx++; |
|
930 new_len--; |
|
931 |
|
932 if (iidx == num_to_delete) |
|
933 break; |
|
934 } |
|
935 |
|
936 if (new_len > 0) |
|
937 { |
|
938 T *new_data = new T [new_len]; |
|
939 |
|
940 int ii = 0; |
|
941 iidx = 0; |
|
942 for (int i = 0; i < len; i++) |
|
943 { |
|
944 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) |
|
945 iidx++; |
|
946 else |
|
947 { |
|
948 new_data[ii] = elem (i); |
|
949 ii++; |
|
950 } |
|
951 } |
|
952 |
|
953 if (--rep->count <= 0) |
|
954 delete rep; |
|
955 |
|
956 rep = new typename Array<T>::ArrayRep (new_data, new_len); |
|
957 |
|
958 dimensions.resize (1); |
|
959 dimensions(0) = new_len; |
|
960 } |
|
961 else |
|
962 (*current_liboctave_error_handler) |
|
963 ("A(idx) = []: index out of range"); |
|
964 } |
|
965 } |
|
966 } |
|
967 |
|
968 template <class T> |
|
969 void |
|
970 Array<T>::maybe_delete_elements_2 (idx_vector& idx_arg) |
|
971 { |
|
972 int nr = dim1 (); |
|
973 int nc = dim2 (); |
|
974 |
|
975 if (nr == 0 && nc == 0) |
|
976 return; |
|
977 |
|
978 int n; |
|
979 if (nr == 1) |
|
980 n = nc; |
|
981 else if (nc == 1) |
|
982 n = nr; |
|
983 else |
|
984 { |
|
985 (*current_liboctave_error_handler) |
|
986 ("A(idx) = []: expecting A to be row or column vector or scalar"); |
|
987 |
|
988 return; |
|
989 } |
|
990 |
|
991 if (idx_arg.is_colon_equiv (n, 1)) |
|
992 { |
|
993 // Either A(:) = [] or A(idx) = [] with idx enumerating all |
|
994 // elements, so we delete all elements and return [](0x0). To |
|
995 // preserve the orientation of the vector, you have to use |
|
996 // A(idx,:) = [] (delete rows) or A(:,idx) (delete columns). |
|
997 |
|
998 resize_no_fill (0, 0); |
|
999 return; |
|
1000 } |
|
1001 |
|
1002 idx_arg.sort (true); |
|
1003 |
|
1004 int num_to_delete = idx_arg.length (n); |
|
1005 |
|
1006 if (num_to_delete != 0) |
|
1007 { |
|
1008 int new_n = n; |
|
1009 |
|
1010 int iidx = 0; |
|
1011 |
|
1012 for (int i = 0; i < n; i++) |
|
1013 if (i == idx_arg.elem (iidx)) |
|
1014 { |
|
1015 iidx++; |
|
1016 new_n--; |
|
1017 |
|
1018 if (iidx == num_to_delete) |
|
1019 break; |
|
1020 } |
|
1021 |
|
1022 if (new_n > 0) |
|
1023 { |
|
1024 T *new_data = new T [new_n]; |
|
1025 |
|
1026 int ii = 0; |
|
1027 iidx = 0; |
|
1028 for (int i = 0; i < n; i++) |
|
1029 { |
|
1030 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) |
|
1031 iidx++; |
|
1032 else |
|
1033 { |
|
1034 if (nr == 1) |
|
1035 new_data[ii] = elem (0, i); |
|
1036 else |
|
1037 new_data[ii] = elem (i, 0); |
|
1038 |
|
1039 ii++; |
|
1040 } |
|
1041 } |
|
1042 |
|
1043 if (--(Array<T>::rep)->count <= 0) |
|
1044 delete Array<T>::rep; |
|
1045 |
|
1046 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_n); |
|
1047 |
|
1048 dimensions.resize (2); |
|
1049 |
|
1050 if (nr == 1) |
|
1051 { |
|
1052 dimensions(0) = 1; |
|
1053 dimensions(1) = new_n; |
|
1054 } |
|
1055 else |
|
1056 { |
|
1057 dimensions(0) = new_n; |
|
1058 dimensions(1) = 1; |
|
1059 } |
|
1060 } |
|
1061 else |
|
1062 (*current_liboctave_error_handler) |
|
1063 ("A(idx) = []: index out of range"); |
|
1064 } |
|
1065 } |
|
1066 |
|
1067 template <class T> |
|
1068 void |
|
1069 Array<T>::maybe_delete_elements (idx_vector& idx_i, idx_vector& idx_j) |
|
1070 { |
|
1071 int nr = dim1 (); |
|
1072 int nc = dim2 (); |
|
1073 |
|
1074 if (nr == 0 && nc == 0) |
|
1075 return; |
|
1076 |
|
1077 if (idx_i.is_colon ()) |
|
1078 { |
|
1079 if (idx_j.is_colon ()) |
|
1080 { |
|
1081 // A(:,:) -- We are deleting columns and rows, so the result |
|
1082 // is [](0x0). |
|
1083 |
|
1084 resize_no_fill (0, 0); |
|
1085 return; |
|
1086 } |
|
1087 |
|
1088 if (idx_j.is_colon_equiv (nc, 1)) |
|
1089 { |
|
1090 // A(:,j) -- We are deleting columns by enumerating them, |
|
1091 // If we enumerate all of them, we should have zero columns |
|
1092 // with the same number of rows that we started with. |
|
1093 |
|
1094 resize_no_fill (nr, 0); |
|
1095 return; |
|
1096 } |
|
1097 } |
|
1098 |
|
1099 if (idx_j.is_colon () && idx_i.is_colon_equiv (nr, 1)) |
|
1100 { |
|
1101 // A(i,:) -- We are deleting rows by enumerating them. If we |
|
1102 // enumerate all of them, we should have zero rows with the |
|
1103 // same number of columns that we started with. |
|
1104 |
|
1105 resize_no_fill (0, nc); |
|
1106 return; |
|
1107 } |
|
1108 |
|
1109 if (idx_i.is_colon_equiv (nr, 1)) |
|
1110 { |
|
1111 if (idx_j.is_colon_equiv (nc, 1)) |
|
1112 resize_no_fill (0, 0); |
|
1113 else |
|
1114 { |
|
1115 idx_j.sort (true); |
|
1116 |
|
1117 int num_to_delete = idx_j.length (nc); |
|
1118 |
|
1119 if (num_to_delete != 0) |
|
1120 { |
|
1121 if (nr == 1 && num_to_delete == nc) |
|
1122 resize_no_fill (0, 0); |
|
1123 else |
|
1124 { |
|
1125 int new_nc = nc; |
|
1126 |
|
1127 int iidx = 0; |
|
1128 |
|
1129 for (int j = 0; j < nc; j++) |
|
1130 if (j == idx_j.elem (iidx)) |
|
1131 { |
|
1132 iidx++; |
|
1133 new_nc--; |
|
1134 |
|
1135 if (iidx == num_to_delete) |
|
1136 break; |
|
1137 } |
|
1138 |
|
1139 if (new_nc > 0) |
|
1140 { |
|
1141 T *new_data = new T [nr * new_nc]; |
|
1142 |
|
1143 int jj = 0; |
|
1144 iidx = 0; |
|
1145 for (int j = 0; j < nc; j++) |
|
1146 { |
|
1147 if (iidx < num_to_delete && j == idx_j.elem (iidx)) |
|
1148 iidx++; |
|
1149 else |
|
1150 { |
|
1151 for (int i = 0; i < nr; i++) |
|
1152 new_data[nr*jj+i] = elem (i, j); |
|
1153 jj++; |
|
1154 } |
|
1155 } |
|
1156 |
|
1157 if (--(Array<T>::rep)->count <= 0) |
|
1158 delete Array<T>::rep; |
|
1159 |
|
1160 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, nr * new_nc); |
|
1161 |
|
1162 dimensions.resize (2); |
|
1163 dimensions(1) = new_nc; |
|
1164 } |
|
1165 else |
|
1166 (*current_liboctave_error_handler) |
|
1167 ("A(idx) = []: index out of range"); |
|
1168 } |
|
1169 } |
|
1170 } |
|
1171 } |
|
1172 else if (idx_j.is_colon_equiv (nc, 1)) |
|
1173 { |
|
1174 if (idx_i.is_colon_equiv (nr, 1)) |
|
1175 resize_no_fill (0, 0); |
|
1176 else |
|
1177 { |
|
1178 idx_i.sort (true); |
|
1179 |
|
1180 int num_to_delete = idx_i.length (nr); |
|
1181 |
|
1182 if (num_to_delete != 0) |
|
1183 { |
|
1184 if (nc == 1 && num_to_delete == nr) |
|
1185 resize_no_fill (0, 0); |
|
1186 else |
|
1187 { |
|
1188 int new_nr = nr; |
|
1189 |
|
1190 int iidx = 0; |
|
1191 |
|
1192 for (int i = 0; i < nr; i++) |
|
1193 if (i == idx_i.elem (iidx)) |
|
1194 { |
|
1195 iidx++; |
|
1196 new_nr--; |
|
1197 |
|
1198 if (iidx == num_to_delete) |
|
1199 break; |
|
1200 } |
|
1201 |
|
1202 if (new_nr > 0) |
|
1203 { |
|
1204 T *new_data = new T [new_nr * nc]; |
|
1205 |
|
1206 int ii = 0; |
|
1207 iidx = 0; |
|
1208 for (int i = 0; i < nr; i++) |
|
1209 { |
|
1210 if (iidx < num_to_delete && i == idx_i.elem (iidx)) |
|
1211 iidx++; |
|
1212 else |
|
1213 { |
|
1214 for (int j = 0; j < nc; j++) |
|
1215 new_data[new_nr*j+ii] = elem (i, j); |
|
1216 ii++; |
|
1217 } |
|
1218 } |
|
1219 |
|
1220 if (--(Array<T>::rep)->count <= 0) |
|
1221 delete Array<T>::rep; |
|
1222 |
|
1223 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_nr * nc); |
|
1224 |
|
1225 dimensions.resize (2); |
|
1226 dimensions(0) = new_nr; |
|
1227 } |
|
1228 else |
|
1229 (*current_liboctave_error_handler) |
|
1230 ("A(idx) = []: index out of range"); |
|
1231 } |
|
1232 } |
|
1233 } |
|
1234 } |
|
1235 } |
|
1236 |
|
1237 template <class T> |
|
1238 void |
|
1239 Array<T>::maybe_delete_elements (idx_vector&, idx_vector&, idx_vector&) |
|
1240 { |
|
1241 assert (0); |
|
1242 } |
|
1243 |
|
1244 template <class T> |
|
1245 void |
|
1246 Array<T>::maybe_delete_elements (Array<idx_vector>& idx, const T& rfv) |
|
1247 { |
|
1248 int n_idx = idx.length (); |
|
1249 |
|
1250 dim_vector lhs_dims = dims (); |
|
1251 |
|
1252 dim_vector idx_is_colon; |
|
1253 idx_is_colon.resize (n_idx); |
|
1254 |
|
1255 dim_vector idx_is_colon_equiv; |
|
1256 idx_is_colon_equiv.resize (n_idx); |
|
1257 |
|
1258 // Initialization of colon arrays. |
|
1259 |
|
1260 for (int i = 0; i < n_idx; i++) |
|
1261 { |
|
1262 idx_is_colon_equiv(i) = idx(i).is_colon_equiv (lhs_dims(i), 1); |
|
1263 |
|
1264 idx_is_colon(i) = idx(i).is_colon (); |
|
1265 } |
|
1266 |
|
1267 if (all_ones (idx_is_colon) || all_ones (idx_is_colon_equiv)) |
|
1268 { |
|
1269 // A(:,:,:) -- we are deleting elements in all dimensions, so |
|
1270 // the result is [](0x0x0). |
|
1271 |
|
1272 dim_vector zeros; |
|
1273 zeros.resize (n_idx); |
|
1274 |
|
1275 for (int i = 0; i < n_idx; i++) |
|
1276 zeros(i) = 0; |
|
1277 |
|
1278 resize (zeros, rfv); |
|
1279 } |
|
1280 |
|
1281 else if (num_ones (idx_is_colon) == n_idx - 1 |
|
1282 && num_ones (idx_is_colon_equiv) == n_idx) |
|
1283 { |
|
1284 // A(:,:,j) -- we are deleting elements in one dimension by |
|
1285 // enumerating them. |
|
1286 // |
|
1287 // If we enumerate all of the elements, we should have zero |
|
1288 // elements in that dimension with the same number of elements |
|
1289 // in the other dimensions that we started with. |
|
1290 |
|
1291 dim_vector temp_dims; |
|
1292 temp_dims.resize (n_idx); |
|
1293 |
|
1294 for (int i = 0; i < n_idx; i++) |
|
1295 { |
|
1296 if (idx_is_colon (i)) |
|
1297 temp_dims (i) = lhs_dims (i); |
|
1298 else |
|
1299 temp_dims (i) = 0; |
|
1300 } |
|
1301 |
|
1302 resize (temp_dims); |
|
1303 } |
|
1304 else if (num_ones (idx_is_colon) == n_idx - 1) |
|
1305 { |
|
1306 // We have colons in all indices except for one. |
|
1307 // This index tells us which slice to delete |
|
1308 |
|
1309 int non_col = 0; |
|
1310 |
|
1311 // Find the non-colon column. |
|
1312 |
|
1313 for (int i = 0; i < n_idx; i++) |
|
1314 { |
|
1315 if (! idx_is_colon (i)) |
|
1316 non_col = i; |
|
1317 } |
|
1318 |
|
1319 // The length of the non-colon dimension. |
|
1320 |
|
1321 int non_col_dim = lhs_dims (non_col); |
|
1322 |
|
1323 idx(non_col).sort (true); |
|
1324 |
|
1325 int num_to_delete = idx(non_col).length (lhs_dims (non_col)); |
|
1326 |
|
1327 if (num_to_delete > 0) |
|
1328 { |
4530
|
1329 int temp = num_ones (lhs_dims); |
4517
|
1330 |
|
1331 if (non_col_dim == 1) |
|
1332 temp--; |
|
1333 |
|
1334 if (temp == n_idx - 1 && num_to_delete == non_col_dim) |
|
1335 { |
|
1336 // We have A with (1x1x4), where A(1,:,1:4) |
|
1337 // Delete all (0x0x0) |
|
1338 |
|
1339 dim_vector zero_dims (n_idx, 0); |
|
1340 |
|
1341 resize (zero_dims, rfv); |
|
1342 } |
|
1343 else |
|
1344 { |
|
1345 // New length of non-colon dimension |
|
1346 // (calculated in the next for loop) |
|
1347 |
|
1348 int new_dim = non_col_dim; |
|
1349 |
|
1350 int iidx = 0; |
|
1351 |
|
1352 for (int j = 0; j < non_col_dim; j++) |
|
1353 if (j == idx(non_col).elem (iidx)) |
|
1354 { |
|
1355 iidx++; |
|
1356 |
|
1357 new_dim--; |
|
1358 |
|
1359 if (iidx == num_to_delete) |
|
1360 break; |
|
1361 } |
|
1362 |
|
1363 // Creating the new nd array after deletions. |
|
1364 |
|
1365 if (new_dim > 0) |
|
1366 { |
|
1367 // Calculate number of elements in new array. |
|
1368 |
|
1369 int num_new_elem=1; |
|
1370 |
|
1371 for (int i = 0; i < n_idx; i++) |
|
1372 { |
|
1373 if (i == non_col) |
|
1374 num_new_elem *= new_dim; |
|
1375 |
|
1376 else |
|
1377 num_new_elem *= lhs_dims(i); |
|
1378 } |
|
1379 |
|
1380 T *new_data = new T [num_new_elem]; |
4530
|
1381 |
4517
|
1382 Array<int> result_idx (lhs_dims.length (), 0); |
|
1383 |
|
1384 dim_vector lhs_inc; |
|
1385 lhs_inc.resize (lhs_dims.length ()); |
|
1386 |
|
1387 for (int i = 0; i < lhs_dims.length (); i++) |
|
1388 lhs_inc(i) = lhs_dims(i) + 1; |
|
1389 |
|
1390 dim_vector new_lhs_dim = lhs_dims; |
|
1391 |
|
1392 new_lhs_dim(non_col) = new_dim; |
|
1393 |
|
1394 int num_elem = 1; |
|
1395 |
|
1396 int numidx = 0; |
|
1397 |
|
1398 int n = length (); |
|
1399 |
|
1400 for (int i =0; i < lhs_dims.length (); i++) |
|
1401 if (i != non_col) |
|
1402 num_elem *= lhs_dims (i); |
|
1403 |
|
1404 num_elem *= idx(non_col).capacity (); |
|
1405 |
|
1406 for (int i = 0; i < n; i++) |
|
1407 { |
|
1408 if (numidx < num_elem |
|
1409 && is_in (result_idx(non_col), idx(non_col))) |
|
1410 numidx++; |
|
1411 |
|
1412 else |
|
1413 { |
|
1414 Array<int> temp_result_idx = result_idx; |
|
1415 |
|
1416 int num_lgt |
|
1417 = how_many_lgt (result_idx(non_col), idx(non_col)); |
|
1418 |
|
1419 temp_result_idx(non_col) -= num_lgt; |
|
1420 |
|
1421 int kidx |
|
1422 = ::compute_index (temp_result_idx, new_lhs_dim); |
|
1423 |
|
1424 new_data[kidx] = elem (result_idx); |
|
1425 } |
|
1426 |
|
1427 increment_index (result_idx, lhs_dims); |
|
1428 } |
|
1429 |
|
1430 if (--rep->count <= 0) |
|
1431 delete rep; |
|
1432 |
|
1433 rep = new typename Array<T>::ArrayRep (new_data, |
|
1434 num_new_elem); |
|
1435 |
|
1436 dimensions = new_lhs_dim; |
|
1437 } |
|
1438 } |
|
1439 } |
|
1440 } |
4530
|
1441 else if (num_ones (idx_is_colon) < n_idx) |
4517
|
1442 { |
|
1443 (*current_liboctave_error_handler) |
4530
|
1444 ("A null assignment can have only one non-colon index"); |
4517
|
1445 } |
|
1446 } |
|
1447 |
|
1448 template <class T> |
|
1449 Array<T> |
|
1450 Array<T>::value (void) |
|
1451 { |
|
1452 Array<T> retval; |
|
1453 |
|
1454 int n_idx = index_count (); |
|
1455 |
|
1456 if (n_idx == 2) |
|
1457 { |
|
1458 idx_vector *tmp = get_idx (); |
|
1459 |
|
1460 idx_vector idx_i = tmp[0]; |
|
1461 idx_vector idx_j = tmp[1]; |
|
1462 |
|
1463 retval = index (idx_i, idx_j); |
|
1464 } |
|
1465 else if (n_idx == 1) |
|
1466 { |
|
1467 retval = index (idx[0]); |
|
1468 } |
|
1469 else |
|
1470 (*current_liboctave_error_handler) |
|
1471 ("Array<T>::value: invalid number of indices specified"); |
|
1472 |
|
1473 clear_index (); |
|
1474 |
|
1475 return retval; |
|
1476 } |
|
1477 |
|
1478 template <class T> |
|
1479 Array<T> |
|
1480 Array<T>::index (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
1481 { |
|
1482 Array<T> retval; |
|
1483 |
|
1484 switch (ndims ()) |
|
1485 { |
|
1486 case 1: |
|
1487 retval = index1 (idx_arg, resize_ok, rfv); |
|
1488 break; |
|
1489 |
|
1490 case 2: |
|
1491 retval = index2 (idx_arg, resize_ok, rfv); |
|
1492 break; |
|
1493 |
|
1494 default: |
4530
|
1495 retval = indexN (idx_arg, resize_ok, rfv); |
4517
|
1496 break; |
|
1497 } |
|
1498 |
|
1499 return retval; |
|
1500 } |
|
1501 |
|
1502 template <class T> |
|
1503 Array<T> |
|
1504 Array<T>::index1 (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
1505 { |
|
1506 Array<T> retval; |
|
1507 |
|
1508 int len = length (); |
|
1509 |
|
1510 int n = idx_arg.freeze (len, "vector", resize_ok); |
|
1511 |
|
1512 if (idx_arg) |
|
1513 { |
|
1514 if (idx_arg.is_colon_equiv (len)) |
|
1515 { |
|
1516 retval = *this; |
|
1517 } |
|
1518 else if (n == 0) |
|
1519 { |
|
1520 retval.resize_no_fill (0); |
|
1521 } |
|
1522 else if (len == 1 && n > 1 |
|
1523 && idx_arg.one_zero_only () |
|
1524 && idx_arg.ones_count () == n) |
|
1525 { |
|
1526 retval.resize (n, elem (0)); |
|
1527 } |
|
1528 else |
|
1529 { |
|
1530 retval.resize_no_fill (n); |
|
1531 |
|
1532 for (int i = 0; i < n; i++) |
|
1533 { |
|
1534 int ii = idx_arg.elem (i); |
|
1535 if (ii >= len) |
|
1536 retval.elem (i) = rfv; |
|
1537 else |
|
1538 retval.elem (i) = elem (ii); |
|
1539 } |
|
1540 } |
|
1541 } |
|
1542 |
|
1543 // idx_vector::freeze() printed an error message for us. |
|
1544 |
|
1545 return retval; |
|
1546 } |
|
1547 |
|
1548 template <class T> |
|
1549 Array<T> |
|
1550 Array<T>::index2 (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
1551 { |
|
1552 Array<T> retval; |
|
1553 |
|
1554 int nr = dim1 (); |
|
1555 int nc = dim2 (); |
|
1556 |
|
1557 int orig_len = nr * nc; |
|
1558 |
|
1559 int idx_orig_rows = idx_arg.orig_rows (); |
|
1560 int idx_orig_columns = idx_arg.orig_columns (); |
|
1561 |
|
1562 if (idx_arg.is_colon ()) |
|
1563 { |
|
1564 // Fast magic colon processing. |
|
1565 |
|
1566 int result_nr = nr * nc; |
|
1567 int result_nc = 1; |
|
1568 |
|
1569 retval = Array<T> (*this, dim_vector (result_nr, result_nc)); |
|
1570 } |
|
1571 else if (nr == 1 && nc == 1) |
|
1572 { |
|
1573 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); |
|
1574 |
|
1575 if (tmp.length () != 0) |
|
1576 retval = Array<T> (tmp, dim_vector (idx_orig_rows, idx_orig_columns)); |
|
1577 else |
|
1578 retval = Array<T> (tmp, dim_vector (0, 0)); |
|
1579 } |
|
1580 else if (nr == 1 || nc == 1) |
|
1581 { |
|
1582 // If indexing a vector with a matrix, return value has same |
|
1583 // shape as the index. Otherwise, it has same orientation as |
|
1584 // indexed object. |
|
1585 |
|
1586 Array<T> tmp = index1 (idx_arg, resize_ok); |
|
1587 |
|
1588 int len = tmp.length (); |
|
1589 |
|
1590 if (len == 0) |
|
1591 { |
|
1592 if (idx_orig_rows == 0 || idx_orig_columns == 0) |
|
1593 retval = Array<T> (dim_vector (idx_orig_rows, idx_orig_columns)); |
|
1594 else if (nr == 1) |
|
1595 retval = Array<T> (dim_vector (1, 0)); |
|
1596 else |
|
1597 retval = Array<T> (dim_vector (0, 1)); |
|
1598 } |
|
1599 else |
|
1600 { |
|
1601 if (idx_orig_rows == 1 || idx_orig_columns == 1) |
|
1602 { |
|
1603 if (nr == 1) |
|
1604 retval = Array<T> (tmp, dim_vector (1, len)); |
|
1605 else |
|
1606 retval = Array<T> (tmp, dim_vector (len, 1)); |
|
1607 } |
|
1608 else |
|
1609 retval = Array<T> (tmp, dim_vector (idx_orig_rows, idx_orig_columns)); |
|
1610 } |
|
1611 } |
|
1612 else |
|
1613 { |
|
1614 if (liboctave_wfi_flag |
|
1615 && ! (idx_arg.one_zero_only () |
|
1616 && idx_orig_rows == nr |
|
1617 && idx_orig_columns == nc)) |
|
1618 (*current_liboctave_warning_handler) ("single index used for matrix"); |
|
1619 |
|
1620 // This code is only for indexing matrices. The vector |
|
1621 // cases are handled above. |
|
1622 |
|
1623 idx_arg.freeze (nr * nc, "matrix", resize_ok); |
|
1624 |
|
1625 if (idx_arg) |
|
1626 { |
|
1627 int result_nr = idx_orig_rows; |
|
1628 int result_nc = idx_orig_columns; |
|
1629 |
|
1630 if (idx_arg.one_zero_only ()) |
|
1631 { |
|
1632 result_nr = idx_arg.ones_count (); |
|
1633 result_nc = (result_nr > 0 ? 1 : 0); |
|
1634 } |
|
1635 |
|
1636 retval.resize_no_fill (result_nr, result_nc); |
|
1637 |
|
1638 int k = 0; |
|
1639 for (int j = 0; j < result_nc; j++) |
|
1640 { |
|
1641 for (int i = 0; i < result_nr; i++) |
|
1642 { |
|
1643 int ii = idx_arg.elem (k++); |
|
1644 if (ii >= orig_len) |
|
1645 retval.elem (i, j) = rfv; |
|
1646 else |
|
1647 { |
|
1648 int fr = ii % nr; |
|
1649 int fc = (ii - fr) / nr; |
|
1650 retval.elem (i, j) = elem (fr, fc); |
|
1651 } |
|
1652 } |
|
1653 } |
|
1654 } |
|
1655 // idx_vector::freeze() printed an error message for us. |
|
1656 } |
|
1657 |
|
1658 return retval; |
|
1659 } |
|
1660 |
|
1661 template <class T> |
|
1662 Array<T> |
4530
|
1663 Array<T>::indexN (idx_vector& ra_idx, int resize_ok, const T& rfv) const |
|
1664 { |
|
1665 Array<T> retval; |
|
1666 |
|
1667 int n_dims = dims ().length (); |
|
1668 |
|
1669 int orig_len = number_of_elements (dims ()); |
|
1670 |
|
1671 Array<int> idx_orig_dimsXXX = ra_idx.orig_dimensions (); |
|
1672 |
|
1673 dim_vector idx_orig_dims; |
|
1674 |
|
1675 idx_orig_dims.resize(idx_orig_dimsXXX.length()); |
|
1676 |
|
1677 for (int i = 0; i < idx_orig_dimsXXX.length(); i++) |
|
1678 idx_orig_dims(i) = idx_orig_dimsXXX(i); |
|
1679 |
|
1680 |
|
1681 if (ra_idx.is_colon ()) |
|
1682 { |
|
1683 dim_vector idx(orig_len); |
|
1684 |
|
1685 retval = Array<T> (*this, idx); |
|
1686 |
|
1687 } |
|
1688 else if (length () == 1) |
|
1689 { |
|
1690 // Only one element in array. |
|
1691 |
|
1692 Array<T> tmp = Array<T>::index (ra_idx, resize_ok); |
|
1693 |
|
1694 if (tmp.length () != 0) |
|
1695 retval = Array<T> (tmp, idx_orig_dims); |
|
1696 else |
|
1697 { |
|
1698 dim_vector d; |
|
1699 retval = Array<T> (tmp, d); |
|
1700 } |
|
1701 } |
|
1702 else if (vector_equivalent (dims ())) |
|
1703 { |
|
1704 // We're getting elements from a vector equivalent i.e. (1x4x1). |
|
1705 |
|
1706 Array<T> tmp = Array<T>::index (ra_idx, resize_ok); |
|
1707 |
|
1708 int len = tmp.length (); |
|
1709 |
|
1710 if (len == 0) |
|
1711 { |
|
1712 if (any_zero_len (idx_orig_dims)) |
|
1713 retval = Array<T> (idx_orig_dims); |
|
1714 else |
|
1715 { |
|
1716 dim_vector new_dims; |
|
1717 new_dims.resize (n_dims); |
|
1718 |
|
1719 for (int i = 0; i < n_dims; i++) |
|
1720 { |
|
1721 if ((dims ())(i) == 1) |
|
1722 new_dims(i) = 1; |
|
1723 } |
|
1724 |
|
1725 retval = Array<T> (new_dims); |
|
1726 } |
|
1727 } |
|
1728 else |
|
1729 { |
|
1730 if (vector_equivalent(idx_orig_dims)) |
|
1731 { |
|
1732 // Array<int> index (n_dims, len); |
|
1733 dim_vector new_dims; |
|
1734 |
|
1735 new_dims.resize (n_dims); |
|
1736 |
|
1737 for (int i = 0; i < n_dims; i++) |
|
1738 { |
|
1739 if ((dims ())(i) == 1) |
|
1740 new_dims(i) = 1; |
|
1741 } |
|
1742 |
|
1743 retval = Array<T> (tmp, new_dims); |
|
1744 } |
|
1745 else |
|
1746 retval = Array<T> (tmp, idx_orig_dims); |
|
1747 |
|
1748 (*current_liboctave_error_handler) |
|
1749 ("I do not know what to do here yet!"); |
|
1750 } |
|
1751 } |
|
1752 else if (liboctave_wfi_flag || |
|
1753 (ra_idx.one_zero_only () && equal_arrays (idx_orig_dims, dims ()))) |
|
1754 { |
|
1755 // This code is only for indexing nd-arrays. The vector |
|
1756 // cases are handled above. |
|
1757 |
|
1758 ra_idx.freeze (orig_len, "nd-array", resize_ok); |
|
1759 |
|
1760 if (ra_idx) |
|
1761 { |
|
1762 dim_vector result_dims (idx_orig_dims); |
|
1763 |
|
1764 if (ra_idx.one_zero_only ()) |
|
1765 { |
|
1766 for (int i = 0; i < result_dims.length(); i++) |
|
1767 { |
|
1768 if (i == 0) |
|
1769 result_dims(i) = ra_idx.ones_count (); |
|
1770 else if (result_dims(0) > 0) |
|
1771 result_dims(i) = 1; |
|
1772 else |
|
1773 result_dims(i) = 0; |
|
1774 } |
|
1775 } |
|
1776 |
|
1777 retval.resize (result_dims); |
|
1778 |
|
1779 int n = number_of_elements (result_dims); |
|
1780 |
|
1781 int r_dims = result_dims.length (); |
|
1782 |
|
1783 Array<int> index (r_dims, 0); |
|
1784 |
|
1785 int k = 0; |
|
1786 |
|
1787 for (int i = 0; i < n; i++) |
|
1788 { |
|
1789 int ii = ra_idx.elem (k++); |
|
1790 |
|
1791 if (ii >= orig_len) |
|
1792 retval.elem (index) = rfv; |
|
1793 else |
|
1794 { |
|
1795 Array<int> temp = get_ra_idx (ii, dims ()); |
|
1796 |
|
1797 retval.elem (index) = elem (temp); |
|
1798 } |
|
1799 if (i != n - 1) |
|
1800 increment_index (index, result_dims); |
|
1801 } |
|
1802 } |
|
1803 } |
|
1804 else if (ra_idx.capacity () == 1) |
|
1805 { |
|
1806 // i.e. A(8) for A(3x3x3) |
|
1807 |
|
1808 ra_idx.freeze (orig_len, "nd-array", resize_ok); |
|
1809 |
|
1810 if (ra_idx) |
|
1811 { |
|
1812 int r_idx = ra_idx(0); |
|
1813 |
|
1814 Array<int> idx = get_ra_idx (r_idx, dims ()); |
|
1815 |
|
1816 dim_vector new_dims (1); |
|
1817 new_dims(0)=1; |
|
1818 |
|
1819 // This shouldn't be needed. |
|
1820 |
|
1821 Array<int> e (idx.length ()); |
|
1822 |
|
1823 for (int i = 0; i < idx.length();i++) |
|
1824 e(i) = idx(i); |
|
1825 |
|
1826 // Should be able to call elem (idx). |
|
1827 |
|
1828 retval = Array<T> (new_dims, elem (e)); |
|
1829 } |
|
1830 } |
|
1831 else |
|
1832 (*current_liboctave_error_handler) |
|
1833 ("single index only valid for row or column vector. ra_idx.cap () = &d", |
|
1834 ra_idx.capacity ()); |
|
1835 |
|
1836 return retval; |
|
1837 } |
|
1838 |
|
1839 template <class T> |
|
1840 Array<T> |
4517
|
1841 Array<T>::index (idx_vector& idx_i, idx_vector& idx_j, int resize_ok, |
|
1842 const T& rfv) const |
|
1843 { |
|
1844 Array<T> retval; |
|
1845 |
|
1846 int nr = dim1 (); |
|
1847 int nc = dim2 (); |
|
1848 |
|
1849 int n = idx_i.freeze (nr, "row", resize_ok); |
|
1850 int m = idx_j.freeze (nc, "column", resize_ok); |
|
1851 |
|
1852 if (idx_i && idx_j) |
|
1853 { |
|
1854 if (idx_i.orig_empty () || idx_j.orig_empty () || n == 0 || m == 0) |
|
1855 { |
|
1856 retval.resize_no_fill (n, m); |
|
1857 } |
|
1858 else if (idx_i.is_colon_equiv (nr) && idx_j.is_colon_equiv (nc)) |
|
1859 { |
|
1860 retval = *this; |
|
1861 } |
|
1862 else |
|
1863 { |
|
1864 retval.resize_no_fill (n, m); |
|
1865 |
|
1866 for (int j = 0; j < m; j++) |
|
1867 { |
|
1868 int jj = idx_j.elem (j); |
|
1869 for (int i = 0; i < n; i++) |
|
1870 { |
|
1871 int ii = idx_i.elem (i); |
|
1872 if (ii >= nr || jj >= nc) |
|
1873 retval.elem (i, j) = rfv; |
|
1874 else |
|
1875 retval.elem (i, j) = elem (ii, jj); |
|
1876 } |
|
1877 } |
|
1878 } |
|
1879 } |
|
1880 |
|
1881 // idx_vector::freeze() printed an error message for us. |
|
1882 |
|
1883 return retval; |
|
1884 } |
|
1885 |
|
1886 #include "ArrayN-inline.h" |
|
1887 |
|
1888 template <class T> |
|
1889 Array<T> |
|
1890 Array<T>::index (Array<idx_vector>& ra_idx, int resize_ok, const T& rfv) const |
|
1891 { |
4530
|
1892 // This function handles all calls with more than one idx. |
|
1893 // For (3x3x3), the call can be A(2,5), A(2,:,:), A(3,2,3) etc. |
|
1894 |
4517
|
1895 Array<T> retval; |
|
1896 |
|
1897 int n_dims = dimensions.length (); |
|
1898 |
4530
|
1899 if (n_dims < ra_idx.length ()) |
4517
|
1900 { |
4530
|
1901 (*current_liboctave_error_handler) |
|
1902 ("index exceeds N-d array dimensions"); |
|
1903 |
|
1904 return retval; |
|
1905 } |
|
1906 |
|
1907 dim_vector frozen_lengths = short_freeze (ra_idx, dimensions, resize_ok); |
|
1908 |
|
1909 if (frozen_lengths.length () <= n_dims) |
|
1910 { |
|
1911 if (all_ok (ra_idx)) |
4517
|
1912 { |
4530
|
1913 if (any_orig_empty (ra_idx)) |
|
1914 { |
|
1915 retval.resize (frozen_lengths); |
|
1916 } |
|
1917 else if (any_zero_len (frozen_lengths)) |
4517
|
1918 { |
4530
|
1919 dim_vector new_size = |
|
1920 get_zero_len_size (frozen_lengths, dimensions); |
|
1921 |
|
1922 retval.resize (new_size); |
|
1923 } |
|
1924 else if (all_colon_equiv (ra_idx, dimensions) |
|
1925 && frozen_lengths.length () == n_dims) |
|
1926 { |
|
1927 retval = *this; |
|
1928 } |
|
1929 else |
|
1930 { |
|
1931 retval.resize (frozen_lengths); |
|
1932 |
|
1933 int n = number_of_elements (frozen_lengths); |
|
1934 |
|
1935 Array<int> result_idx (ra_idx.length (), 0); |
|
1936 |
|
1937 dim_vector this_dims = dims (); |
|
1938 |
|
1939 for (int i = 0; i < n; i++) |
4517
|
1940 { |
4530
|
1941 Array<int> elt_idx = get_elt_idx (ra_idx, result_idx); |
|
1942 |
|
1943 int numelem_result = |
|
1944 get_scalar_idx (result_idx, frozen_lengths); |
|
1945 |
|
1946 int numelem_elt = get_scalar_idx (elt_idx, this_dims); |
|
1947 |
|
1948 if (numelem_result > length () || numelem_result < 0 |
|
1949 || numelem_elt > length () || numelem_elt < 0) |
|
1950 (*current_liboctave_error_handler) |
|
1951 ("attempt to grow array along ambiguous dimension"); |
|
1952 else |
4533
|
1953 retval.checkelem (numelem_result) = checkelem (numelem_elt); |
4530
|
1954 |
|
1955 increment_index (result_idx, frozen_lengths); |
|
1956 |
4517
|
1957 } |
|
1958 } |
|
1959 } |
|
1960 } |
|
1961 else |
|
1962 (*current_liboctave_error_handler) |
|
1963 ("invalid number of dimensions for N-dimensional array index"); |
|
1964 |
|
1965 return retval; |
|
1966 } |
|
1967 |
|
1968 // XXX FIXME XXX -- this is a mess. |
|
1969 |
|
1970 template <class LT, class RT> |
|
1971 int |
|
1972 assign (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
1973 { |
|
1974 int retval = 0; |
|
1975 |
|
1976 switch (lhs.ndims ()) |
|
1977 { |
|
1978 case 0: |
|
1979 { |
|
1980 if (lhs.index_count () < 3) |
|
1981 { |
|
1982 // kluge... |
|
1983 lhs.resize_no_fill (0, 0); |
|
1984 retval = assign2 (lhs, rhs, rfv); |
|
1985 } |
|
1986 else |
|
1987 retval = assignN (lhs, rhs, rfv); |
|
1988 } |
|
1989 break; |
|
1990 |
|
1991 case 1: |
|
1992 { |
|
1993 if (lhs.index_count () > 1) |
|
1994 retval = assignN (lhs, rhs, rfv); |
|
1995 else |
|
1996 retval = assign1 (lhs, rhs, rfv); |
|
1997 } |
|
1998 break; |
|
1999 |
|
2000 case 2: |
|
2001 { |
|
2002 if (lhs.index_count () > 2) |
|
2003 retval = assignN (lhs, rhs, rfv); |
|
2004 else |
|
2005 retval = assign2 (lhs, rhs, rfv); |
|
2006 } |
|
2007 break; |
|
2008 |
|
2009 default: |
|
2010 retval = assignN (lhs, rhs, rfv); |
|
2011 break; |
|
2012 } |
|
2013 |
|
2014 return retval; |
|
2015 } |
|
2016 |
|
2017 template <class LT, class RT> |
|
2018 int |
|
2019 assign1 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2020 { |
|
2021 int retval = 1; |
|
2022 |
|
2023 idx_vector *tmp = lhs.get_idx (); |
|
2024 |
|
2025 idx_vector lhs_idx = tmp[0]; |
|
2026 |
|
2027 int lhs_len = lhs.length (); |
|
2028 int rhs_len = rhs.length (); |
|
2029 |
|
2030 int n = lhs_idx.freeze (lhs_len, "vector", true, liboctave_wrore_flag); |
|
2031 |
|
2032 if (n != 0) |
|
2033 { |
|
2034 if (rhs_len == n || rhs_len == 1) |
|
2035 { |
|
2036 int max_idx = lhs_idx.max () + 1; |
|
2037 if (max_idx > lhs_len) |
|
2038 lhs.resize (max_idx, rfv); |
|
2039 } |
|
2040 |
|
2041 if (rhs_len == n) |
|
2042 { |
|
2043 for (int i = 0; i < n; i++) |
|
2044 { |
|
2045 int ii = lhs_idx.elem (i); |
|
2046 lhs.elem (ii) = rhs.elem (i); |
|
2047 } |
|
2048 } |
|
2049 else if (rhs_len == 1) |
|
2050 { |
|
2051 RT scalar = rhs.elem (0); |
|
2052 |
|
2053 for (int i = 0; i < n; i++) |
|
2054 { |
|
2055 int ii = lhs_idx.elem (i); |
|
2056 lhs.elem (ii) = scalar; |
|
2057 } |
|
2058 } |
|
2059 else |
|
2060 { |
|
2061 (*current_liboctave_error_handler) |
|
2062 ("A(I) = X: X must be a scalar or a vector with same length as I"); |
|
2063 |
|
2064 retval = 0; |
|
2065 } |
|
2066 } |
|
2067 else if (lhs_idx.is_colon ()) |
|
2068 { |
|
2069 if (lhs_len == 0) |
|
2070 { |
|
2071 lhs.resize_no_fill (rhs_len); |
|
2072 |
|
2073 for (int i = 0; i < rhs_len; i++) |
|
2074 lhs.elem (i) = rhs.elem (i); |
|
2075 } |
|
2076 else |
|
2077 (*current_liboctave_error_handler) |
|
2078 ("A(:) = X: A must be the same size as X"); |
|
2079 } |
|
2080 else if (! (rhs_len == 1 || rhs_len == 0)) |
|
2081 { |
|
2082 (*current_liboctave_error_handler) |
|
2083 ("A([]) = X: X must also be an empty matrix or a scalar"); |
|
2084 |
|
2085 retval = 0; |
|
2086 } |
|
2087 |
|
2088 lhs.clear_index (); |
|
2089 |
|
2090 return retval; |
|
2091 } |
|
2092 |
|
2093 #define MAYBE_RESIZE_LHS \ |
|
2094 do \ |
|
2095 { \ |
|
2096 int max_row_idx = idx_i_is_colon ? rhs_nr : idx_i.max () + 1; \ |
|
2097 int max_col_idx = idx_j_is_colon ? rhs_nc : idx_j.max () + 1; \ |
|
2098 \ |
|
2099 int new_nr = max_row_idx > lhs_nr ? max_row_idx : lhs_nr; \ |
|
2100 int new_nc = max_col_idx > lhs_nc ? max_col_idx : lhs_nc; \ |
|
2101 \ |
|
2102 lhs.resize_and_fill (new_nr, new_nc, rfv); \ |
|
2103 } \ |
|
2104 while (0) |
|
2105 |
|
2106 template <class LT, class RT> |
|
2107 int |
|
2108 assign2 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2109 { |
|
2110 int retval = 1; |
|
2111 |
|
2112 int n_idx = lhs.index_count (); |
|
2113 |
|
2114 int lhs_nr = lhs.rows (); |
|
2115 int lhs_nc = lhs.cols (); |
|
2116 |
|
2117 int rhs_nr = rhs.rows (); |
|
2118 int rhs_nc = rhs.cols (); |
|
2119 |
|
2120 idx_vector *tmp = lhs.get_idx (); |
|
2121 |
|
2122 idx_vector idx_i; |
|
2123 idx_vector idx_j; |
|
2124 |
|
2125 if (n_idx > 1) |
|
2126 idx_j = tmp[1]; |
|
2127 |
|
2128 if (n_idx > 0) |
|
2129 idx_i = tmp[0]; |
|
2130 |
|
2131 if (n_idx == 2) |
|
2132 { |
|
2133 int n = idx_i.freeze (lhs_nr, "row", true, liboctave_wrore_flag); |
|
2134 |
|
2135 int m = idx_j.freeze (lhs_nc, "column", true, liboctave_wrore_flag); |
|
2136 |
|
2137 int idx_i_is_colon = idx_i.is_colon (); |
|
2138 int idx_j_is_colon = idx_j.is_colon (); |
|
2139 |
|
2140 if (idx_i_is_colon) |
|
2141 n = lhs_nr > 0 ? lhs_nr : rhs_nr; |
|
2142 |
|
2143 if (idx_j_is_colon) |
|
2144 m = lhs_nc > 0 ? lhs_nc : rhs_nc; |
|
2145 |
|
2146 if (idx_i && idx_j) |
|
2147 { |
|
2148 if (rhs_nr == 0 && rhs_nc == 0) |
|
2149 { |
|
2150 lhs.maybe_delete_elements (idx_i, idx_j); |
|
2151 } |
|
2152 else |
|
2153 { |
|
2154 if (rhs_nr == 1 && rhs_nc == 1 && n > 0 && m > 0) |
|
2155 { |
|
2156 MAYBE_RESIZE_LHS; |
|
2157 |
|
2158 RT scalar = rhs.elem (0, 0); |
|
2159 |
|
2160 for (int j = 0; j < m; j++) |
|
2161 { |
|
2162 int jj = idx_j.elem (j); |
|
2163 for (int i = 0; i < n; i++) |
|
2164 { |
|
2165 int ii = idx_i.elem (i); |
|
2166 lhs.elem (ii, jj) = scalar; |
|
2167 } |
|
2168 } |
|
2169 } |
|
2170 else if (n == rhs_nr && m == rhs_nc) |
|
2171 { |
|
2172 if (n > 0 && m > 0) |
|
2173 { |
|
2174 MAYBE_RESIZE_LHS; |
|
2175 |
|
2176 for (int j = 0; j < m; j++) |
|
2177 { |
|
2178 int jj = idx_j.elem (j); |
|
2179 for (int i = 0; i < n; i++) |
|
2180 { |
|
2181 int ii = idx_i.elem (i); |
|
2182 lhs.elem (ii, jj) = rhs.elem (i, j); |
|
2183 } |
|
2184 } |
|
2185 } |
|
2186 } |
|
2187 else if (n == 0 && m == 0) |
|
2188 { |
|
2189 if (! ((rhs_nr == 1 && rhs_nc == 1) |
|
2190 || (rhs_nr == 0 && rhs_nc == 0))) |
|
2191 { |
|
2192 (*current_liboctave_error_handler) |
|
2193 ("A([], []) = X: X must be an empty matrix or a scalar"); |
|
2194 |
|
2195 retval = 0; |
|
2196 } |
|
2197 } |
|
2198 else |
|
2199 { |
|
2200 (*current_liboctave_error_handler) |
|
2201 ("A(I, J) = X: X must be a scalar or the number of elements in I must"); |
|
2202 (*current_liboctave_error_handler) |
|
2203 ("match the number of rows in X and the number of elements in J must"); |
|
2204 (*current_liboctave_error_handler) |
|
2205 ("match the number of columns in X"); |
|
2206 |
|
2207 retval = 0; |
|
2208 } |
|
2209 } |
|
2210 } |
|
2211 // idx_vector::freeze() printed an error message for us. |
|
2212 } |
|
2213 else if (n_idx == 1) |
|
2214 { |
|
2215 int lhs_is_empty = lhs_nr == 0 || lhs_nc == 0; |
|
2216 |
|
2217 if (lhs_is_empty || (lhs_nr == 1 && lhs_nc == 1)) |
|
2218 { |
|
2219 int lhs_len = lhs.length (); |
|
2220 |
|
2221 int n = idx_i.freeze (lhs_len, 0, true, liboctave_wrore_flag); |
|
2222 |
|
2223 if (idx_i) |
|
2224 { |
|
2225 if (rhs_nr == 0 && rhs_nc == 0) |
|
2226 { |
|
2227 if (n != 0 && (lhs_nr != 0 || lhs_nc != 0)) |
|
2228 lhs.maybe_delete_elements (idx_i); |
|
2229 } |
|
2230 else |
|
2231 { |
|
2232 if (liboctave_wfi_flag) |
|
2233 { |
|
2234 if (lhs_is_empty |
|
2235 && idx_i.is_colon () |
|
2236 && ! (rhs_nr == 1 || rhs_nc == 1)) |
|
2237 { |
|
2238 (*current_liboctave_warning_handler) |
|
2239 ("A(:) = X: X is not a vector or scalar"); |
|
2240 } |
|
2241 else |
|
2242 { |
|
2243 int idx_nr = idx_i.orig_rows (); |
|
2244 int idx_nc = idx_i.orig_columns (); |
|
2245 |
|
2246 if (! (rhs_nr == idx_nr && rhs_nc == idx_nc)) |
|
2247 (*current_liboctave_warning_handler) |
|
2248 ("A(I) = X: X does not have same shape as I"); |
|
2249 } |
|
2250 } |
|
2251 |
|
2252 if (assign1 ((Array<LT>&) lhs, (Array<RT>&) rhs, rfv)) |
|
2253 { |
|
2254 int len = lhs.length (); |
|
2255 |
|
2256 if (len > 0) |
|
2257 { |
|
2258 // The following behavior is much simplified |
|
2259 // over previous versions of Octave. It |
|
2260 // seems to be compatible with Matlab. |
|
2261 |
|
2262 lhs.dimensions = dim_vector (1, lhs.length ()); |
|
2263 } |
|
2264 else |
|
2265 lhs.dimensions = dim_vector (0, 0); |
|
2266 } |
|
2267 else |
|
2268 retval = 0; |
|
2269 } |
|
2270 } |
|
2271 // idx_vector::freeze() printed an error message for us. |
|
2272 } |
|
2273 else if (lhs_nr == 1) |
|
2274 { |
|
2275 idx_i.freeze (lhs_nc, "vector", true, liboctave_wrore_flag); |
|
2276 |
|
2277 if (idx_i) |
|
2278 { |
|
2279 if (rhs_nr == 0 && rhs_nc == 0) |
|
2280 lhs.maybe_delete_elements (idx_i); |
|
2281 else |
|
2282 { |
|
2283 if (assign1 ((Array<LT>&) lhs, (Array<RT>&) rhs, rfv)) |
|
2284 lhs.dimensions = dim_vector (1, lhs.length ()); |
|
2285 else |
|
2286 retval = 0; |
|
2287 } |
|
2288 } |
|
2289 // idx_vector::freeze() printed an error message for us. |
|
2290 } |
|
2291 else if (lhs_nc == 1) |
|
2292 { |
|
2293 idx_i.freeze (lhs_nr, "vector", true, liboctave_wrore_flag); |
|
2294 |
|
2295 if (idx_i) |
|
2296 { |
|
2297 if (rhs_nr == 0 && rhs_nc == 0) |
|
2298 lhs.maybe_delete_elements (idx_i); |
|
2299 else |
|
2300 { |
|
2301 if (assign1 ((Array<LT>&) lhs, (Array<RT>&) rhs, rfv)) |
|
2302 lhs.dimensions = dim_vector (lhs.length (), 1); |
|
2303 else |
|
2304 retval = 0; |
|
2305 } |
|
2306 } |
|
2307 // idx_vector::freeze() printed an error message for us. |
|
2308 } |
|
2309 else |
|
2310 { |
|
2311 if (liboctave_wfi_flag |
|
2312 && ! (idx_i.is_colon () |
|
2313 || (idx_i.one_zero_only () |
|
2314 && idx_i.orig_rows () == lhs_nr |
|
2315 && idx_i.orig_columns () == lhs_nc))) |
|
2316 (*current_liboctave_warning_handler) |
|
2317 ("single index used for matrix"); |
|
2318 |
|
2319 int len = idx_i.freeze (lhs_nr * lhs_nc, "matrix"); |
|
2320 |
|
2321 if (idx_i) |
|
2322 { |
|
2323 if (len == 0) |
|
2324 { |
|
2325 if (! ((rhs_nr == 1 && rhs_nc == 1) |
|
2326 || (rhs_nr == 0 && rhs_nc == 0))) |
|
2327 (*current_liboctave_error_handler) |
|
2328 ("A([]) = X: X must be an empty matrix or scalar"); |
|
2329 } |
|
2330 else if (len == rhs_nr * rhs_nc) |
|
2331 { |
|
2332 int k = 0; |
|
2333 for (int j = 0; j < rhs_nc; j++) |
|
2334 { |
|
2335 for (int i = 0; i < rhs_nr; i++) |
|
2336 { |
|
2337 int ii = idx_i.elem (k++); |
|
2338 int fr = ii % lhs_nr; |
|
2339 int fc = (ii - fr) / lhs_nr; |
|
2340 lhs.elem (fr, fc) = rhs.elem (i, j); |
|
2341 } |
|
2342 } |
|
2343 } |
|
2344 else if (rhs_nr == 1 && rhs_nc == 1 && len <= lhs_nr * lhs_nc) |
|
2345 { |
|
2346 RT scalar = rhs.elem (0, 0); |
|
2347 |
|
2348 for (int i = 0; i < len; i++) |
|
2349 { |
|
2350 int ii = idx_i.elem (i); |
|
2351 int fr = ii % lhs_nr; |
|
2352 int fc = (ii - fr) / lhs_nr; |
|
2353 lhs.elem (fr, fc) = scalar; |
|
2354 } |
|
2355 } |
|
2356 else |
|
2357 { |
|
2358 (*current_liboctave_error_handler) |
|
2359 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); |
|
2360 |
|
2361 retval = 0; |
|
2362 } |
|
2363 } |
|
2364 // idx_vector::freeze() printed an error message for us. |
|
2365 } |
|
2366 } |
|
2367 else |
|
2368 { |
|
2369 (*current_liboctave_error_handler) |
|
2370 ("invalid number of indices for matrix expression"); |
|
2371 |
|
2372 retval = 0; |
|
2373 } |
|
2374 |
|
2375 lhs.clear_index (); |
|
2376 |
|
2377 return retval; |
|
2378 } |
|
2379 |
|
2380 #define MAYBE_RESIZE_ND_DIMS \ |
|
2381 do \ |
|
2382 { \ |
|
2383 if (n_idx >= lhs_dims.length () && ! rhs_is_empty) \ |
|
2384 { \ |
|
2385 Array<int> max_idx (n_idx); \ |
|
2386 dim_vector new_idx; \ |
|
2387 new_idx.resize (n_idx); \ |
|
2388 \ |
|
2389 for (int i = 0; i < n_idx; i++) \ |
|
2390 { \ |
|
2391 if (lhs_dims.length () == 0 || i >= lhs_dims.length ()) \ |
|
2392 new_idx(i) = idx(i).max () + 1; \ |
|
2393 else \ |
|
2394 { \ |
|
2395 if (i < rhs_dims.length ()) \ |
|
2396 max_idx(i) = idx(i).is_colon () ? rhs_dims(i) : idx(i).max () + 1; \ |
|
2397 else \ |
|
2398 max_idx(i) = idx(i).max () + 1; \ |
|
2399 \ |
|
2400 new_idx(i) = max_idx(i) > lhs_dims(i) ? max_idx(i) : lhs_dims(i); \ |
|
2401 } \ |
|
2402 } \ |
|
2403 \ |
|
2404 lhs.resize (new_idx, rfv); \ |
|
2405 lhs_dims = lhs.dims (); \ |
|
2406 } \ |
|
2407 } \ |
|
2408 while (0) |
|
2409 |
|
2410 template <class LT, class RT> |
|
2411 int |
|
2412 assignN (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2413 { |
|
2414 int retval = 1; |
|
2415 |
|
2416 int n_idx = lhs.index_count (); |
|
2417 |
|
2418 dim_vector lhs_dims = lhs.dims (); |
|
2419 dim_vector rhs_dims = rhs.dims (); |
|
2420 |
|
2421 idx_vector *tmp = lhs.get_idx (); |
|
2422 |
|
2423 Array<idx_vector> idx = conv_to_array (tmp, n_idx); |
|
2424 |
|
2425 // This needs to be defined before MAYBE_RESIZE_ND_DIMS. |
|
2426 |
|
2427 bool rhs_is_empty = rhs_dims.length () == 0 ? true : any_zero_len (rhs_dims); |
|
2428 |
|
2429 // Maybe expand to more dimensions. |
|
2430 |
|
2431 MAYBE_RESIZE_ND_DIMS; |
|
2432 |
|
2433 Array<int> idx_is_colon (n_idx, 0); |
|
2434 Array<int> idx_is_colon_equiv (n_idx, 0); |
|
2435 |
|
2436 for (int i = 0; i < n_idx; i++) |
|
2437 { |
|
2438 idx_is_colon_equiv(i) = idx(i).is_colon_equiv (lhs_dims(i), 1); |
|
2439 |
|
2440 idx_is_colon(i) = idx(i).is_colon (); |
|
2441 } |
|
2442 |
|
2443 int resize_ok = 1; |
|
2444 |
|
2445 dim_vector frozen_len; |
|
2446 |
|
2447 if (n_idx == lhs_dims.length ()) |
|
2448 frozen_len = freeze (idx, lhs_dims, resize_ok); |
|
2449 |
|
2450 bool rhs_is_scalar = is_scalar (rhs_dims); |
|
2451 |
|
2452 bool idx_is_empty = any_zero_len (frozen_len); |
|
2453 |
|
2454 if (rhs_is_empty) |
|
2455 { |
|
2456 lhs.maybe_delete_elements (idx, rfv); |
|
2457 } |
|
2458 else if (rhs_is_scalar) |
|
2459 { |
|
2460 if (n_idx == 0) |
|
2461 (*current_liboctave_error_handler) |
4530
|
2462 ("number of indices is zero"); |
4533
|
2463 else if (n_idx == 1) |
|
2464 { |
|
2465 Array<int> one_arg_temp (1, 0); |
|
2466 |
|
2467 RT scalar = rhs.elem (one_arg_temp); |
|
2468 |
|
2469 lhs.fill (scalar); |
|
2470 } |
4517
|
2471 else if (n_idx < lhs_dims.length ()) |
|
2472 { |
|
2473 // Number of indices is less than dimensions. |
|
2474 |
|
2475 if (any_ones (idx_is_colon)|| any_ones (idx_is_colon_equiv)) |
|
2476 { |
|
2477 (*current_liboctave_error_handler) |
4530
|
2478 ("number of indices is less than number of dimensions, one or more indices are colons"); |
4517
|
2479 } |
|
2480 else |
|
2481 { |
|
2482 // Fewer indices than dimensions, no colons. |
|
2483 |
|
2484 bool resize = false; |
|
2485 |
|
2486 // Subtract one since the last idx do not tell us |
|
2487 // anything about dimensionality. |
|
2488 |
|
2489 for (int i = 0; i < idx.length () - 1; i++) |
|
2490 { |
|
2491 // Subtract one since idx counts from 0 while dims |
|
2492 // count from 1. |
|
2493 |
|
2494 if (idx(i).elem (0) + 1 > lhs_dims(i)) |
|
2495 resize = true; |
|
2496 } |
|
2497 |
|
2498 if (resize) |
|
2499 { |
|
2500 dim_vector new_dims; |
|
2501 new_dims.resize (lhs_dims.length ()); |
|
2502 |
|
2503 for (int i = 0; i < lhs_dims.length (); i++) |
|
2504 { |
|
2505 if (i < idx.length () - 1 |
|
2506 && idx(i).elem (0) + 1 > lhs_dims(i)) |
|
2507 new_dims(i) = idx(i).elem (0)+1; |
|
2508 else |
|
2509 new_dims(i) = lhs_dims(i); |
|
2510 } |
|
2511 |
|
2512 lhs.resize (new_dims, rfv); |
|
2513 |
|
2514 lhs_dims = lhs.dims (); |
|
2515 } |
|
2516 |
|
2517 Array<int> one_arg_temp (1, 0); |
|
2518 |
|
2519 RT scalar = rhs.elem (one_arg_temp); |
|
2520 |
|
2521 Array<int> int_arr = conv_to_int_array (idx); |
|
2522 |
|
2523 int numelem = get_scalar_idx (int_arr, lhs_dims); |
|
2524 |
|
2525 if (numelem > lhs.length () || numelem < 0) |
|
2526 (*current_liboctave_error_handler) |
4530
|
2527 ("attempt to grow array along ambiguous dimension"); |
4517
|
2528 else |
4533
|
2529 lhs.checkelem (numelem) = scalar; |
4517
|
2530 } |
|
2531 } |
|
2532 else |
|
2533 { |
|
2534 // Scalar to matrix assignment with as many indices as lhs |
|
2535 // dimensions. |
|
2536 |
|
2537 int n = Array<LT>::get_size (frozen_len); |
|
2538 |
|
2539 Array<int> result_idx (lhs_dims.length (), 0); |
|
2540 |
|
2541 Array<int> elt_idx; |
|
2542 |
|
2543 RT scalar = rhs.elem (0); |
|
2544 |
|
2545 for (int i = 0; i < n; i++) |
|
2546 { |
|
2547 elt_idx = get_elt_idx (idx, result_idx); |
|
2548 |
|
2549 dim_vector lhs_inc; |
|
2550 lhs_inc.resize (lhs_dims.length ()); |
|
2551 |
|
2552 for (int i = 0; i < lhs_dims.length (); i++) |
|
2553 lhs_inc(i) = lhs_dims(i) + 1; |
|
2554 |
|
2555 if (index_in_bounds(elt_idx, lhs_inc)) |
|
2556 lhs.checkelem (elt_idx) = scalar; |
|
2557 else |
|
2558 lhs.checkelem (elt_idx) = rfv; |
|
2559 |
|
2560 increment_index (result_idx, frozen_len); |
|
2561 } |
|
2562 } |
|
2563 } |
4533
|
2564 else if (rhs_dims.length () > 1) |
4517
|
2565 { |
|
2566 // RHS is matrix or higher dimension. |
|
2567 |
|
2568 // Subtracting number of dimensions of length 1 will catch |
|
2569 // cases where: A(2,1,2)=3 A(:,1,:)=[2,3;4,5] |
|
2570 |
4530
|
2571 if (rhs_dims.length () |
|
2572 != num_ones (idx_is_colon_equiv) - num_ones (lhs_dims)) |
4517
|
2573 { |
|
2574 (*current_liboctave_error_handler) |
4530
|
2575 ("dimensions do not match in matrix assignment"); |
4517
|
2576 } |
|
2577 else |
|
2578 { |
4530
|
2579 bool dim_ok = true; |
4517
|
2580 |
|
2581 int jj = 0; |
|
2582 |
|
2583 // Check that RHS dimensions are the same length as the |
|
2584 // corresponding LHS dimensions. |
|
2585 |
|
2586 for (int j = 0; j < idx_is_colon.length (); j++) |
|
2587 { |
|
2588 if (idx_is_colon(j) || idx_is_colon_equiv(j)) |
|
2589 { |
|
2590 if (rhs_dims(jj) < lhs_dims(j)) |
|
2591 { |
|
2592 dim_ok = false; |
|
2593 |
|
2594 break; |
|
2595 } |
|
2596 |
|
2597 jj++; |
|
2598 } |
|
2599 } |
|
2600 |
|
2601 if (! dim_ok) |
|
2602 (*current_liboctave_error_handler) |
4530
|
2603 ("subscripted assignment dimension mismatch"); |
4517
|
2604 else |
|
2605 { |
|
2606 dim_vector new_dims; |
|
2607 new_dims.resize (n_idx); |
|
2608 |
|
2609 bool resize = false; |
|
2610 |
|
2611 int ii = 0; |
|
2612 |
|
2613 // Update idx vectors. |
|
2614 |
|
2615 for (int i = 0; i < n_idx; i++) |
|
2616 { |
|
2617 if (idx(i).is_colon ()) |
|
2618 { |
|
2619 // Add appropriate idx_vector to idx(i) since |
|
2620 // index with : contains no indexes. |
|
2621 |
|
2622 frozen_len(i) = lhs_dims(i) > rhs_dims(ii) ? lhs_dims(i) : rhs_dims(ii); |
|
2623 |
|
2624 new_dims(i) = lhs_dims(i) > rhs_dims(ii) ? lhs_dims(i) : rhs_dims(ii); |
|
2625 |
|
2626 ii++; |
|
2627 |
|
2628 Range idxrange (1, frozen_len(i), 1); |
|
2629 |
|
2630 idx_vector idxv (idxrange); |
|
2631 |
|
2632 idx(i) = idxv; |
|
2633 } |
|
2634 else |
|
2635 { |
|
2636 new_dims(i) = lhs_dims(i) > idx(i).max () + 1 ? lhs_dims(i) : idx(i).max () + 1; |
|
2637 |
|
2638 if (frozen_len(i) > 1) |
|
2639 ii++; |
|
2640 } |
|
2641 if (new_dims(i) != lhs_dims(i)) |
|
2642 resize = true; |
|
2643 } |
|
2644 |
|
2645 // Resize LHS if dimensions have changed. |
|
2646 |
|
2647 if (resize) |
|
2648 { |
|
2649 lhs.resize (new_dims, rfv); |
|
2650 |
|
2651 lhs_dims = lhs.dims (); |
|
2652 } |
|
2653 |
|
2654 // Number of elements which need to be set. |
|
2655 |
|
2656 int n = Array<LT>::get_size (frozen_len); |
|
2657 |
|
2658 Array<int> result_idx (lhs_dims.length (), 0); |
|
2659 Array<int> elt_idx; |
|
2660 |
|
2661 Array<int> result_rhs_idx (rhs_dims.length (), 0); |
|
2662 |
|
2663 dim_vector frozen_rhs; |
|
2664 frozen_rhs.resize (rhs_dims.length()); |
|
2665 |
|
2666 for (int i = 0; i < rhs_dims.length (); i++) |
|
2667 frozen_rhs(i) = rhs_dims(i); |
|
2668 |
|
2669 dim_vector lhs_inc; |
|
2670 lhs_inc.resize (lhs_dims.length ()); |
|
2671 |
|
2672 for (int i = 0; i < lhs_dims.length (); i++) |
|
2673 lhs_inc(i) = lhs_dims(i) + 1; |
|
2674 |
|
2675 for (int i = 0; i < n; i++) |
|
2676 { |
|
2677 elt_idx = get_elt_idx (idx, result_idx); |
|
2678 |
|
2679 if (index_in_bounds (elt_idx, lhs_inc)) |
|
2680 { |
|
2681 int s = compute_index (result_rhs_idx,rhs_dims); |
|
2682 |
|
2683 lhs.checkelem (elt_idx) = rhs.elem (s); |
|
2684 |
|
2685 increment_index (result_rhs_idx, frozen_rhs); |
|
2686 } |
|
2687 else |
|
2688 lhs.checkelem (elt_idx) = rfv; |
|
2689 |
|
2690 increment_index (result_idx, frozen_len); |
|
2691 } |
|
2692 } |
|
2693 } |
|
2694 } |
|
2695 else if (idx_is_empty) |
|
2696 { |
|
2697 // Assignment to matrix with at least one empty index. |
|
2698 |
|
2699 if (! rhs_is_empty || ! rhs_is_scalar) |
|
2700 { |
|
2701 (*current_liboctave_error_handler) |
|
2702 ("A([], []) = X: X must be an empty matrix or a scalar"); |
|
2703 |
|
2704 retval = 0; |
|
2705 } |
|
2706 } |
|
2707 else if (lhs_dims.length () != rhs_dims.length ()) |
|
2708 { |
|
2709 (*current_liboctave_error_handler) |
|
2710 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); |
|
2711 retval = 0; |
|
2712 } |
|
2713 |
|
2714 lhs.clear_index (); |
|
2715 |
|
2716 return retval; |
|
2717 } |
|
2718 |
|
2719 template <class T> |
|
2720 void |
3933
|
2721 Array<T>::print_info (std::ostream& os, const std::string& prefix) const |
|
2722 { |
|
2723 os << prefix << "rep address: " << rep << "\n" |
|
2724 << prefix << "rep->len: " << rep->len << "\n" |
|
2725 << prefix << "rep->data: " << static_cast<void *> (rep->data) << "\n" |
|
2726 << prefix << "rep->count: " << rep->count << "\n"; |
4513
|
2727 |
|
2728 // 2D info: |
|
2729 // |
|
2730 // << prefix << "rows: " << rows () << "\n" |
|
2731 // << prefix << "cols: " << cols () << "\n"; |
3933
|
2732 } |
|
2733 |
237
|
2734 /* |
|
2735 ;;; Local Variables: *** |
|
2736 ;;; mode: C++ *** |
|
2737 ;;; End: *** |
|
2738 */ |