Mercurial > hg > octave-nkf
comparison scripts/general/interpn.m @ 6702:b2391d403ed2
[project @ 2007-06-12 21:39:26 by dbateman]
author | dbateman |
---|---|
date | Tue, 12 Jun 2007 21:39:27 +0000 |
parents | |
children | 01036667884a |
comparison
equal
deleted
inserted
replaced
6701:3933e0693fe0 | 6702:b2391d403ed2 |
---|---|
1 ## Copyright (C) 2007 David Bateman | |
2 ## | |
3 ## This file is part of Octave. | |
4 ## | |
5 ## Octave is free software; you can redistribute it and/or modify it | |
6 ## under the terms of the GNU General Public License as published by | |
7 ## the Free Software Foundation; either version 2, or (at your option) | |
8 ## any later version. | |
9 ## | |
10 ## Octave is distributed in the hope that it will be useful, but | |
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
13 ## General Public License for more details. | |
14 ## | |
15 ## You should have received a copy of the GNU General Public License | |
16 ## along with Octave; see the file COPYING. If not, write to the Free | |
17 ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | |
18 ## 02110-1301, USA. | |
19 | |
20 ## -*- texinfo -*- | |
21 ## @deftypefn {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{}) | |
22 ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{}) | |
23 ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m}) | |
24 ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}) | |
25 ## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}) | |
26 ## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval}) | |
27 ## | |
28 ## Perform @var{n}-dimensional interpolation, where @var{n} is at least two. | |
29 ## Each element of then @var{n}-dimensional array @var{v} represents a value | |
30 ## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}. | |
31 ## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either | |
32 ## @var{n}-dimensional arrays of the same size as the array @var{v} in | |
33 ## the 'ndgrid' format or vectors. The parameters @var{y1}, etc respect a | |
34 ## similar format to @var{x1}, etc, and they represent the points at which | |
35 ## the array @var{vi} is interpolated. | |
36 ## | |
37 ## If @var{x1}, @dots{}, @var{xn} are ommitted, they are assumed to be | |
38 ## @code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then | |
39 ## the interpolation adds a point half way between each of the interplation | |
40 ## points. This process is performed @var{m} times. If only @var{v} is | |
41 ## specified, then @var{m} is assumed to be @code{1}. | |
42 ## | |
43 ## Method is one of: | |
44 ## | |
45 ## @table @asis | |
46 ## @item 'nearest' | |
47 ## Return the nearest neighbour. | |
48 ## @item 'linear' | |
49 ## Linear interpolation from nearest neighbours. | |
50 ## @item 'cubic' | |
51 ## Cubic interpolation from four nearest neighbours (not implemented yet). | |
52 ## @item 'spline' | |
53 ## Cubic spline interpolation--smooth first and second derivatives | |
54 ## throughout the curve. | |
55 ## @end table | |
56 ## | |
57 ## The default method is 'linear'. | |
58 ## | |
59 ## If @var{extrap} is the string 'extrap', then extrapolate values beyond | |
60 ## the endpoints. If @var{extrap} is a number, replace values beyond the | |
61 ## endpoints with that number. If @var{extrap} is missing, assume NaN. | |
62 ## @seealso{interp1, interp2, spline, ndgrid} | |
63 ## @end deftypefn | |
64 | |
65 function vi = interpn (varargin) | |
66 | |
67 method = "linear"; | |
68 extrapval = NaN; | |
69 nargs = nargin; | |
70 | |
71 if (nargin < 1) | |
72 print_usage (); | |
73 endif | |
74 | |
75 if (ischar (varargin {end})) | |
76 method = varargin {end}; | |
77 nargs = nargs - 1; | |
78 elseif (ischar (varargin {end - 1})) | |
79 if (! isnumeric (vargin {end}) || ! isscalar (vargin {end})) | |
80 error ("extrapal is expected to be a numeric scalar"); | |
81 endif | |
82 method = varargin {end - 1}; | |
83 nargs = nargs - 2; | |
84 endif | |
85 | |
86 if (nargs < 3) | |
87 v = varargin {1}; | |
88 m = 1; | |
89 if (nargs == 2) | |
90 m = varargin {2}; | |
91 if (! isnumeric (m) || ! isscalar (m) || floor (m) != m) | |
92 error ("m is expected to be a integer scalar"); | |
93 endif | |
94 endif | |
95 sz = size (v); | |
96 nd = ndims (v); | |
97 x = cell (1, nd); | |
98 y = cell (1, nd); | |
99 for i = 1 : nd; | |
100 x{i} = 1 : sz(i); | |
101 y{i} = 1 : (1 / (2 ^ m)) : sz(i); | |
102 endfor | |
103 elseif (! isvector (varargin {1}) && nargs == (ndims (varargin {1}) + 1)) | |
104 v = varargin {1}; | |
105 sz = size (v); | |
106 nd = ndims (v); | |
107 x = cell (1, nd); | |
108 y = varargin (2 : nargs); | |
109 for i = 1 : nd; | |
110 x{i} = 1 : sz(i); | |
111 endfor | |
112 elseif (rem (nargs, 2) == 1 && nargs == | |
113 (2 * ndims (varargin {ceil (nargs / 2)})) + 1) | |
114 nv = ceil (nargs / 2); | |
115 v = varargin {nv}; | |
116 sz = size (v); | |
117 nd = ndims (v); | |
118 x = varargin (1 : (nv - 1)); | |
119 y = varargin ((nv + 1) : nargs); | |
120 else | |
121 error ("wrong number or incorrectly formatted input arguments"); | |
122 endif | |
123 | |
124 if (any (! cellfun (@isvector, x))) | |
125 for i = 2 : nd | |
126 if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v)) | |
127 error ("dimensional mismatch"); | |
128 endif | |
129 idx (1 : nd) = {1}; | |
130 idx (i) = ":"; | |
131 x{i} = x{i}(idx{:}); | |
132 endfor | |
133 idx (1 : nd) = {1}; | |
134 idx (1) = ":"; | |
135 x{1} = x{1}(idx{:}); | |
136 endif | |
137 | |
138 if (strcmp (method, "linear") || strcmp (method, "nearest")) | |
139 if (all (cellfun (@isvector, y))) | |
140 [y{:}] = ndgrid (y{:}); | |
141 endif | |
142 elseif (any (! cellfun (@isvector, x))) | |
143 for i = 1 : nd | |
144 idx (1 : nd) = {1}; | |
145 idx (i) = ":"; | |
146 y{i} = y{i}(idx{:}); | |
147 endfor | |
148 endif | |
149 | |
150 method = tolower (method); | |
151 if (strcmp (method, "linear")) | |
152 vi = __lin_interpn__ (x{:}, v, y{:}); | |
153 vi (vi == NaN) = extrapval; | |
154 elseif (strcmp (method, "nearest")) | |
155 yshape = size (y{1}); | |
156 yidx = cell (1, nd); | |
157 for i = 1 : nd | |
158 y{i} = y{i}(:); | |
159 yidx{i} = lookup (x{i}(2:end-1), y{i}) + 1; | |
160 endfor | |
161 idx = cell (1,nd); | |
162 for i = 1 : nd | |
163 idx {i} = yidx{i} + (y{i} - x{i}(yidx{i}).' > ... | |
164 x{i}(yidx{i} + 1).' - y{i}); | |
165 endfor | |
166 vi = v (sub2ind (sz, idx{:})); | |
167 idx = zeros (prod(yshape),1); | |
168 for i = 1 : nd | |
169 idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:)); | |
170 endfor | |
171 vi(idx) = extrapval; | |
172 vi = reshape (vi, yshape); | |
173 elseif (strcmp (method, "spline")) | |
174 vi = __splinen__ (x, v, y, extrapval, "interpn"); | |
175 elseif (strcmp (method, "cubic")) | |
176 error ("cubic interpolation not yet implemented"); | |
177 else | |
178 error ("unrecognized interpolation method"); | |
179 endif | |
180 | |
181 endfunction | |
182 | |
183 %!demo | |
184 %! A=[13,-1,12;5,4,3;1,6,2]; | |
185 %! x=[0,1,4]; y=[10,11,12]; | |
186 %! xi=linspace(min(x),max(x),17); | |
187 %! yi=linspace(min(y),max(y),26)'; | |
188 %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"linear").'); | |
189 %! [x,y] = meshgrid(x,y); | |
190 %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; | |
191 | |
192 %!demo | |
193 %! A=[13,-1,12;5,4,3;1,6,2]; | |
194 %! x=[0,1,4]; y=[10,11,12]; | |
195 %! xi=linspace(min(x),max(x),17); | |
196 %! yi=linspace(min(y),max(y),26)'; | |
197 %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"nearest").'); | |
198 %! [x,y] = meshgrid(x,y); | |
199 %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; | |
200 | |
201 %!#demo | |
202 %! A=[13,-1,12;5,4,3;1,6,2]; | |
203 %! x=[0,1,2]; y=[10,11,12]; | |
204 %! xi=linspace(min(x),max(x),17); | |
205 %! yi=linspace(min(y),max(y),26)'; | |
206 %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"cubic").'); | |
207 %! [x,y] = meshgrid(x,y); | |
208 %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; | |
209 | |
210 %!demo | |
211 %! A=[13,-1,12;5,4,3;1,6,2]; | |
212 %! x=[0,1,2]; y=[10,11,12]; | |
213 %! xi=linspace(min(x),max(x),17); | |
214 %! yi=linspace(min(y),max(y),26)'; | |
215 %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"spline").'); | |
216 %! [x,y] = meshgrid(x,y); | |
217 %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; | |
218 |