Mercurial > hg > octave-nkf
view scripts/general/interpn.m @ 6702:b2391d403ed2
[project @ 2007-06-12 21:39:26 by dbateman]
author | dbateman |
---|---|
date | Tue, 12 Jun 2007 21:39:27 +0000 |
parents | |
children | 01036667884a |
line wrap: on
line source
## Copyright (C) 2007 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval}) ## ## Perform @var{n}-dimensional interpolation, where @var{n} is at least two. ## Each element of then @var{n}-dimensional array @var{v} represents a value ## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}. ## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either ## @var{n}-dimensional arrays of the same size as the array @var{v} in ## the 'ndgrid' format or vectors. The parameters @var{y1}, etc respect a ## similar format to @var{x1}, etc, and they represent the points at which ## the array @var{vi} is interpolated. ## ## If @var{x1}, @dots{}, @var{xn} are ommitted, they are assumed to be ## @code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then ## the interpolation adds a point half way between each of the interplation ## points. This process is performed @var{m} times. If only @var{v} is ## specified, then @var{m} is assumed to be @code{1}. ## ## Method is one of: ## ## @table @asis ## @item 'nearest' ## Return the nearest neighbour. ## @item 'linear' ## Linear interpolation from nearest neighbours. ## @item 'cubic' ## Cubic interpolation from four nearest neighbours (not implemented yet). ## @item 'spline' ## Cubic spline interpolation--smooth first and second derivatives ## throughout the curve. ## @end table ## ## The default method is 'linear'. ## ## If @var{extrap} is the string 'extrap', then extrapolate values beyond ## the endpoints. If @var{extrap} is a number, replace values beyond the ## endpoints with that number. If @var{extrap} is missing, assume NaN. ## @seealso{interp1, interp2, spline, ndgrid} ## @end deftypefn function vi = interpn (varargin) method = "linear"; extrapval = NaN; nargs = nargin; if (nargin < 1) print_usage (); endif if (ischar (varargin {end})) method = varargin {end}; nargs = nargs - 1; elseif (ischar (varargin {end - 1})) if (! isnumeric (vargin {end}) || ! isscalar (vargin {end})) error ("extrapal is expected to be a numeric scalar"); endif method = varargin {end - 1}; nargs = nargs - 2; endif if (nargs < 3) v = varargin {1}; m = 1; if (nargs == 2) m = varargin {2}; if (! isnumeric (m) || ! isscalar (m) || floor (m) != m) error ("m is expected to be a integer scalar"); endif endif sz = size (v); nd = ndims (v); x = cell (1, nd); y = cell (1, nd); for i = 1 : nd; x{i} = 1 : sz(i); y{i} = 1 : (1 / (2 ^ m)) : sz(i); endfor elseif (! isvector (varargin {1}) && nargs == (ndims (varargin {1}) + 1)) v = varargin {1}; sz = size (v); nd = ndims (v); x = cell (1, nd); y = varargin (2 : nargs); for i = 1 : nd; x{i} = 1 : sz(i); endfor elseif (rem (nargs, 2) == 1 && nargs == (2 * ndims (varargin {ceil (nargs / 2)})) + 1) nv = ceil (nargs / 2); v = varargin {nv}; sz = size (v); nd = ndims (v); x = varargin (1 : (nv - 1)); y = varargin ((nv + 1) : nargs); else error ("wrong number or incorrectly formatted input arguments"); endif if (any (! cellfun (@isvector, x))) for i = 2 : nd if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v)) error ("dimensional mismatch"); endif idx (1 : nd) = {1}; idx (i) = ":"; x{i} = x{i}(idx{:}); endfor idx (1 : nd) = {1}; idx (1) = ":"; x{1} = x{1}(idx{:}); endif if (strcmp (method, "linear") || strcmp (method, "nearest")) if (all (cellfun (@isvector, y))) [y{:}] = ndgrid (y{:}); endif elseif (any (! cellfun (@isvector, x))) for i = 1 : nd idx (1 : nd) = {1}; idx (i) = ":"; y{i} = y{i}(idx{:}); endfor endif method = tolower (method); if (strcmp (method, "linear")) vi = __lin_interpn__ (x{:}, v, y{:}); vi (vi == NaN) = extrapval; elseif (strcmp (method, "nearest")) yshape = size (y{1}); yidx = cell (1, nd); for i = 1 : nd y{i} = y{i}(:); yidx{i} = lookup (x{i}(2:end-1), y{i}) + 1; endfor idx = cell (1,nd); for i = 1 : nd idx {i} = yidx{i} + (y{i} - x{i}(yidx{i}).' > ... x{i}(yidx{i} + 1).' - y{i}); endfor vi = v (sub2ind (sz, idx{:})); idx = zeros (prod(yshape),1); for i = 1 : nd idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:)); endfor vi(idx) = extrapval; vi = reshape (vi, yshape); elseif (strcmp (method, "spline")) vi = __splinen__ (x, v, y, extrapval, "interpn"); elseif (strcmp (method, "cubic")) error ("cubic interpolation not yet implemented"); else error ("unrecognized interpolation method"); endif endfunction %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,4]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"linear").'); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,4]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"nearest").'); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!#demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,2]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"cubic").'); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,2]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interpn(x,y,A.',xi,yi,"spline").'); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;