Mercurial > hg > octave-nkf
view scripts/geometry/delaunayn.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | 7503499a252b |
children |
line wrap: on
line source
## Copyright (C) 2007-2015 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{T} =} delaunayn (@var{pts}) ## @deftypefnx {Function File} {@var{T} =} delaunayn (@var{pts}, @var{options}) ## Compute the Delaunay triangulation for an N-dimensional set of points. ## ## The Delaunay triangulation is a tessellation of the convex hull of a set of ## points such that no N-sphere defined by the N-triangles contains any other ## points from the set. ## ## The input matrix @var{pts} of size [n, dim] contains n points in a space of ## dimension dim. The return matrix @var{T} has size [m, dim+1]. Each row of ## @var{T} contains a set of indices back into the original set of points ## @var{pts} which describes a simplex of dimension dim. For example, a 2-D ## simplex is a triangle and 3-D simplex is a tetrahedron. ## ## An optional second argument, which must be a string or cell array of strings, ## contains options passed to the underlying qhull command. ## See the documentation for the Qhull library for details ## @url{http://www.qhull.org/html/qh-quick.htm#options}. ## The default options depend on the dimension of the input: ## ## @itemize ## @item 2-D and 3-D: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qz"@}} ## ## @item 4-D and higher: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qx"@}} ## @end itemize ## ## If @var{options} is not present or @code{[]} then the default arguments are ## used. Otherwise, @var{options} replaces the default argument list. ## To append user options to the defaults it is necessary to repeat the ## default arguments in @var{options}. Use a null string to pass no arguments. ## ## @seealso{delaunay, convhulln, voronoin, trimesh, tetramesh} ## @end deftypefn function T = delaunayn (pts, varargin) if (nargin < 1) print_usage (); endif T = __delaunayn__ (pts, varargin{:}); if (isa (pts, "single")) tol = 1e3 * eps ("single"); else tol = 1e3 * eps; endif ## Try to remove the zero volume simplices. The volume of the i-th simplex is ## given by abs(det(pts(T(i,1:end-1),:)-pts(T(i,2:end),:)))/prod(1:n) ## (reference http://en.wikipedia.org/wiki/Simplex). Any simplex with a ## relative volume less than some arbitrary criteria is rejected. The ## criteria we use is the volume of the simplex corresponding to an ## orthogonal simplex is equal edge length all equal to the edge length of ## the original simplex. If the relative volume is 1e3*eps then the simplex ## is rejected. Note division of the two volumes means that the factor ## prod(1:n) is dropped. idx = []; [nt, n] = size (T); ## FIXME: Vectorize this for loop or convert delaunayn to .oct function for i = 1:nt X = pts(T(i,1:end-1),:) - pts(T(i,2:end),:); if (abs (det (X)) / sqrt (sumsq (X, 2)) < tol) idx(end+1) = i; endif endfor T(idx,:) = []; endfunction %!testif HAVE_QHULL %! x = [-1, 0; 0, 1; 1, 0; 0, -1; 0, 0]; %! assert (sortrows (sort (delaunayn (x), 2)), [1,2,5;1,4,5;2,3,5;3,4,5]); ## Test 3-D input %!testif HAVE_QHULL %! x = [-1, -1, 1, 0, -1]; y = [-1, 1, 1, 0, -1]; z = [0, 0, 0, 1, 1]; %! assert (sortrows (sort (delaunayn ([x(:) y(:) z(:)]), 2)), [1,2,3,4;1,2,4,5]) ## FIXME: Need tests for delaunayn ## Input validation tests %!error delaunayn ()