Mercurial > hg > octave-nkf
view scripts/ode/private/starting_stepsize.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | eb9e2d187ed2 |
children |
line wrap: on
line source
## Copyright (C) 2013, Roberto Porcu' <roberto.porcu@polimi.it> ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{h} =} starting_stepsize (@var{order}, @var{@@fun}, @var{t0}, @var{x0}) ## ## This function file can be used to determine a good initial step for an ODE ## solver of order @var{order}. The algorithm is that one described in [1]. ## ## Second input argument, which is @var{@@fun}, is the function describing ## the differential equations, @var{t0} is the initial time and @var{x0} is ## the initial condition. ## ## This function returns a good guess for the initial timestep @var{h}. ## ## References: ## [1] E. Hairer, S.P. Norsett and G. Wanner, ## "Solving Ordinary Differential Equations I: Nonstiff Problems", Springer. ## @end deftypefn ## ## @seealso{odepkg} function h = starting_stepsize (order, func, t0, x0, AbsTol, RelTol, normcontrol) ## compute norm of initial conditions d0 = AbsRel_Norm (x0, x0, AbsTol, RelTol, normcontrol); ## compute norm of the function evaluated at initial conditions y = func (t0, x0); d1 = AbsRel_Norm (y, y, AbsTol, RelTol, normcontrol); if (d0 < 1e-5 || d1 < 1e-5) h0 = 1e-6; else h0 = .01 * (d0 / d1); endif ## compute one step of Explicit-Euler x1 = x0 + h0 * y; ## approximate the derivative norm d2 = (1 / h0) * ... AbsRel_Norm (func (t0+h0, x1) - y, func (t0+h0, x1) - y, AbsTol, RelTol, normcontrol); if (max(d1, d2) <= 1e-15) h1 = max (1e-6, h0*1e-3); else h1 = (1e-2 / max (d1, d2)) ^(1 / (order+1)); endif h = min (100*h0, h1); endfunction