Mercurial > hg > octave-nkf
view scripts/plot/appearance/specular.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | 83792dd9bcc1 |
children |
line wrap: on
line source
## Copyright (C) 2009-2015 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} specular (@var{sx}, @var{sy}, @var{sz}, @var{lv}, @var{vv}) ## @deftypefnx {Function File} {} specular (@var{sx}, @var{sy}, @var{sz}, @var{lv}, @var{vv}, @var{se}) ## Calculate the specular reflection strength of a surface defined by the ## normal vector elements @var{sx}, @var{sy}, @var{sz} using Phong's ## approximation. ## ## The light source location and viewer location vectors are specified using ## parameters @var{lv} and @var{vv} respectively. The location vectors can ## given as 2-element vectors [azimuth, elevation] in degrees or as 3-element ## vectors [x, y, z]. ## ## An optional sixth argument specifies the specular exponent (spread) @var{se}. ## If not given, @var{se} defaults to 10. ## @seealso{diffuse, surfl} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> function retval = specular (sx, sy, sz, lv, vv, se) if (nargin < 5 || nargin > 6) print_usage (); endif ## Check normal vectors if (! size_equal (sx, sy, sz)) error ("specular: SX, SY, and SZ must be the same size"); endif ## Check light vector (lv) argument if (! isvector (lv) || length (lv) < 2 || length (lv) > 3) error ("specular: light vector LV must be a 2- or 3-element vector"); elseif (length (lv) == 2) [lv(1), lv(2), lv(3)] = sph2cart (lv(1) * pi/180, lv(2) * pi/180, 1.0); endif ## Check view vector (vv) argument if (! isvector (vv) || length (vv) < 2 || length (lv) > 3) error ("specular: view vector VV must be a 2- or 3-element vector"); elseif (length (vv) == 2) [vv(1), vv(2), vv(3)] = sph2cart (vv(1) * pi / 180, vv(2) * pi / 180, 1.0); endif ## Check specular exponent (se) argument if (nargin < 6) se = 10; elseif (! (isnumeric (se) && numel (se) == 1 && se > 0)) error ("specular: exponent SE must be a positive scalar"); endif ## Normalize view and light vectors if (sum (abs (lv)) > 0) lv /= norm (lv); endif if (sum (abs (vv)) > 0) vv /= norm (vv); endif ## Calculate normal vector lengths and dot-products ns = sqrt (sx.^2 + sy.^2 + sz.^2); l_dot_n = (sx * lv(1) + sy * lv(2) + sz * lv(3)) ./ ns; v_dot_n = (sx * vv(1) + sy * vv(2) + sz * vv(3)) ./ ns; ## Calculate specular reflection using Phong's approximation retval = 2 * l_dot_n .* v_dot_n - dot (lv, vv); ## Set reflectance to zero if light is on the other side retval(l_dot_n < 0) = 0; ## Allow postive values only retval(retval < 0) = 0; retval .^= se; endfunction